Time and space in distributed computing

Tuomo Lempidinen

Spring meeting of logicians

17 May 2019
Tampere

@ Introduction to distributed computing
© Time and space
© Research on distributed time complexity

@ Case study: constant space and non-constant time

2/30

What is distributed computing?

@ In distributed computing, we study systems that consists of multiple
computational entities or nodes that communicate with each other.

&) &)
& &
& &

3/30

Distributed systems in the wild

@ Distributed computing is a very general concept.

@ Similar principles apply to biological organisms, computer networks,
human societies, ...

Tad

.f
- E B =

a2 a
ff,\f“ = -I -

4/30

Message-passing models of distributed computing

Nodes are computational units, edges
are communication links.

5/30

Message-passing models of distributed computing

Nodes are computational units, edges
are communication links.

5/30

Message-passing models of distributed computing

Nodes are computational units, edges
are communication links.

Each node
@ runs an identical algorithm,

@ communicates with its
neighbouring nodes,

@ halts and produces its own local
output.

5/30

Message-passing models of distributed computing

Nodes are computational units, edges
are communication links.

Numerous models that differ in the
details, e.g. how nodes can distinguish

@ themselves from others,

@ received messages.

5/30

Communication between nodes

Synchronous communication rounds.

On each round, every node
© sends messages to its neighbours,

@ receives messages from its
neighbours,

© updates its local state.

6/30

Communication between nodes

Synchronous communication rounds.

On each round, every node
@ sends messages to its neighbours,

@ receives messages from its
neighbours,

© updates its local state.

6/30

Communication between nodes

Synchronous communication rounds.

‘ ‘ On each round, every node

@ sends messages to its neighbours,
@ @ receives messages from its
neighbours,

© updates its local state.

6/30

Communication between nodes

@ Initially, nodes are only aware of
themselves.

@ By exchanging messages, nodes

gain more information on the
network structure.

@ Number of rounds = distance.

Round 1.

7/30

Communication between nodes

@ Initially, nodes are only aware of
themselves.

@ By exchanging messages, nodes

gain more information on the
network structure.

@ Number of rounds = distance.

Round 2.

7/30

Communication between nodes

@ Initially, nodes are only aware of
themselves.

@ By exchanging messages, nodes

gain more information on the
network structure.

@ Number of rounds = distance.

Round 3.

7/30

Communication between nodes

@ Initially, nodes are only aware of
themselves.

@ By exchanging messages, nodes

gain more information on the
network structure.

@ Number of rounds = distance.

Round 4.

7/30

Graph problems

@ Problem instance = communication graph (4 local input labelling).

@ Example: proper node 3-colouring.
@ Each node has to halt and output its own colour.

8/30

Computational complexity

o Time complexity: the number of communication rounds until all nodes
have halted.

@,

O
O
O
O
O

& s &

O
O
@)

9/30

Computational complexity

@ Space complexity: the number of bits needed to encode all the states
that are visited at least once.

9/30

Computational complexity

o Time complexity: the number of communication rounds until all nodes
have halted.

@ Space complexity: the number of bits needed to encode all the states
that are visited at least once.

@ ...as a function of n, over all graphs of n nodes.

9/30

Research on distributed time complexity

@ The most-studied setting:

o LOCAL model of computing: nodes have unique identifiers.
o Locally-checkable labelling (LCL) problems: solutions can be verified in
constant time.

10/30

Research on distributed time complexity

@ The most-studied setting:
o LOCAL model of computing: nodes have unique identifiers.
o Locally-checkable labelling (LCL) problems: solutions can be verified in
constant time.

@ Cycle and path graphs:
o Initiated by Naor and Stockmeyer (1995).
o Chang, Kopelowitz, Pettie (2016): only O(1), ©(log™ n) and ©(n) are
possible.

@ General bounded-degree graphs:

Lots of progress recently.

Complexities between w(log™ n) and o(n).
A gap between w(log” n) and o(log n).
Complexity ©(n'/¥) for all k.

10/30

What about space complexity?

A well-established topic in centralised complexity theory.
For example, NP C PSPACE C EXP.

In the distributed setting, constant-space computation has been
studied (e.g. cellular automata)

... but the relationship between space and time is mostly an unexplored
area.

11/30

Case study: constant space and non-constant time

Lempidinen & Suomela
Constant space and non-constant time in distributed computing

Proc. 21st International Conference on Principles of Distributed Systems
(OPODIS 2017), Lisbon, Portugal

12/30

Time vs. space in the distributed setting

@ A message-passing model.

@ Constant time complexity = constant space complexity.
@ Does the converse hold?

13/30

Time vs. space in the distributed setting

A message-passing model.

Constant time complexity = constant space complexity.

@ Does the converse hold?

More specifically: does there exist a distributed graph problem that is

e solvable in constant space,
e not solvable in constant time?

13/30

Time vs. space in the distributed setting

A message-passing model.

Constant time complexity = constant space complexity.
Does the converse hold?

More specifically: does there exist a distributed graph problem that is

e solvable in constant space,
e not solvable in constant time?

@ Our result: YES, constant space and constant time can be separated!

13/30

What are the right assumptions? (1/2)

@ Easy to construct constant-space non-constant-time problems if

e promise that the graph is a path, or
e nodes do not need to halt.

@ Count the distance modulo 2 to the nearest degree-1 node:

O-O-O0-O0O0000

14 /30

What are the right assumptions? (1/2)

@ Easy to construct constant-space non-constant-time problems if

e promise that the graph is a path, or
e nodes do not need to halt.

@ Count the distance modulo 2 to the nearest degree-1 node:

14 /30

What are the right assumptions? (1/2)

@ Easy to construct constant-space non-constant-time problems if

e promise that the graph is a path, or
e nodes do not need to halt.

@ Count the distance modulo 2 to the nearest degree-1 node:

14 /30

What are the right assumptions? (1/2)

@ Easy to construct constant-space non-constant-time problems if

e promise that the graph is a path, or
e nodes do not need to halt.

@ Count the distance modulo 2 to the nearest degree-1 node:

14 /30

What are the right assumptions? (1/2)

@ Easy to construct constant-space non-constant-time problems if

e promise that the graph is a path, or
e nodes do not need to halt.

@ Count the distance modulo 2 to the nearest degree-1 node:

14 /30

What are the right assumptions? (1/2)

@ Easy to construct constant-space non-constant-time problems if

e promise that the graph is a path, or
e nodes do not need to halt.

@ Count the distance modulo 2 to the nearest degree-1 node:

@ But what if the input is a cycle?

14 /30

What are the right assumptions? (1/2)

@ Easy to construct constant-space non-constant-time problems if

e promise that the graph is a path, or
e nodes do not need to halt.

@ Count the distance modulo 2 to the nearest degree-1 node:

@ But what if the input is a cycle?

@ Our result does not require any promises about the input.

14 /30

What are the right assumptions? (2/2)

@ To achieve a strong separation result, we want a graph problem I1 that

e is solvable in constant space in a very weak model of computation,
e cannot be solved in constant time even in a very strong model.

@ Hence, we will present an algorithm for I1 in a very weak model of
computation:

no unique IDs,

no randomness,

only constant-size local inputs,

"]
o
]
e only weak communication capabilities.

15/30

Model of computation

Let G = (V, E) be a graph. An input for G is a function f: V — [, where
I is a finite set.

A distributed state machine is a tuple A = (S, H, 00, M, pi,0), where

S is a set of states,

H C S is a finite set of halting states,

0o: N x I — S is an initialisation function,
M is a set of possible messages,

i S — M is a function that constructs the outgoing messages,

0: 5 x P(M) — S is a function that defines the state transitions, so
that o(h, M) = h for each h € H and M € P(M).

16 /30

Model of computation

The execution of A on (G, f):

@ The state of the system in round r e Nis x,: V — S.
o Set xp(v) = oo(deg(v), f(v)) for each v € V.

o Let Art1(v) = {u(x-(u)) : ue N(v)} denote the set of messages
received by node v in round r + 1.

@ The new state of each v € V is x,41(v) = a(x(v), Ars1(v)).

17/30

Complexity measures

@ The running time of A on (G, f) is the smallest t € N for which
x¢(v) € H holds for all v € V.

@ The output of Aon (G,f)is x;: V — H, where t is the running time.

@ The space usage of Aon (G, f)is
{Iog2 [{x-(v)e S :ref0,t]and v e V}”,

where t € N is the running time of A on (G, f).

18/30

Complexity measures

@ The running time of A on (G, f) is the smallest t € N for which
x¢(v) € H holds for all v € V.

@ The output of Aon (G,f)is x;: V — H, where t is the running time.
@ The space usage of Aon (G, f)is
{Iog2 [{x-(v)e S :ref0,t]and v e V}”,

where t € N is the running time of A on (G, f).

@ The constant-time version of this model is captured by the basic modal
logic (Hella et al. 2012).

18/30

Our main result

Construct a graph problem Tl such that

@ there exists a constant-space algorithm A that halts and solves I in all
(finite, simple, and connected) graphs, and

@ [is not solvable by any constant-time algorithm.

There does exist a decision graph problem [1 that satisfies the above
requirements (1) and (2).

19/30

Our main result

Problem

Construct a graph problem T1 such that

@ there exists a constant-space algorithm A that halts and solves I in all
(finite, simple, and connected) graphs, and

@ 1 is not solvable by any constant-time algorithm.

Theorem (Stronger result)

There does exist a decision graph problem [1 that satisfies the above
requirements (1) and (2), and that is not solvable by any sublinear-time
algorithm even in the class of graphs of maximum degree 2.

19/30

An intriguing binary sequence

e The Thue-Morse sequence is the infinite sequence (over {0,1}) whose
prefixes T; of length 2/ are defined as follows:
e start with To =0,
e obtain T; from T;_; by mapping 0 — 01 and 1 — 10.

o First steps:

To=0
T; =01
T, = 0110

T3 = 01101001
T4 =0110100110010110

20/30

An intriguing binary sequence

e The Thue—-Morse sequence is the infinite sequence (over {0,1}) whose
prefixes T; of length 2/ are defined as follows:
e start with To =0,
e obtain T; from T;_; by mapping 0 — 01 and 1~ 10.

@ First steps:

To=0
T; =01
T, = 0110

T3 = 01101001
T4 =0110100110010110

@ Interesting properties:
o For each i € N, Ty; is a palindrome.
e The sequence does not contain any cubes, i.e. subwords XXX for any
X € {0,1}*.

20/30

An intriguing binary sequence

® The Thue-Morse sequence is the infinite sequence (over {0, 1}) whose
prefixes T; of length 2' are defined as follows:

e start with To =0,
e obtain T; from T;_; by mapping 0 — 01 and 1~ 10.

o First steps:

To=0
T, =01
T, = 0110

T3 = 01101001
T4 = 0110100110010110

@ The sequence was used previously in distributed computing by Kuusisto
(2014).

20/30

Towards a decision graph problem

@ Could we separate paths labelled with a prefix T; from all other paths
and cycles by a distributed algorithm?

@ The recursive definition of Thue—Morse can be applied backwards
= Given sequence T;, get back to Tg = 0.

o ... T;T;T;... does not appear in the Thue—Morse sequence
= A cycle graph looks different from a path graph.

@ A promising idea:

e Yes-instance: a path labelled with a prefix of the Thue—Morse sequence.
o No-instance: anything else.

21/30

Formalising the idea: the graph problem I (1/2)

o Define the set of valid words over {0,1, _}:

o 0 isvalid,
e if X is valid and Y is obtained from X by mapping 0— 0_1 1 0 and
1+—1 0 01, then Y is valid.

@ The valid words are prefixes of length 4 of the Thue—Morse sequence,
with a separator _ added at the beginning, between each pair of
consecutive symbols, and at the end.

22/30

The decision graph problem 11 (2/2)

e Local inputs from {A,B,C} x {0,1,_}.

@ Local outputs from {yes, no}.

@ An instance is a yes-instance if and only if
o the graph is a path graph,
o the first parts of the local inputs define a consistent orientation for the
path: ... ABCABCABC.. .,
e the second parts of the local inputs define a valid word over {0,1, _}.

23/30

The algorithm: a high-level idea (1/2)

In each node v of G:

© \Verify degree and orientation: if deg(v) € {1,2} and the orientation is
locally consistent, continue; otherwise, reject.
= G is essentially an oriented path, with a port-numbering.

24/30

The algorithm: a high-level idea (1/2)

In each node v of G:

© \Verify degree and orientation: if deg(v) € {1,2} and the orientation is
locally consistent, continue; otherwise, reject.
= G is essentially an oriented path, with a port-numbering.

@ \Verify the input word locally: if every other label is from {0,1} and
every other label is _, continue; otherwise, reject.
= Copy the input label as the current label of v.
= Maintain an invariant: always a separator _ at some finite distance.

24/30

The algorithm: a high-level idea (2/2)

In each node v of G:

© Apply the recursive definition of Thue—Morse backwards:

0+ 1+ 1+ O+ 1+ O+ O+ 1+ 1+ O+ O+ 1+ O+ 1+ 1+ O+

§ ¢
0000000000+ 1111111111+ _1111111111+_0000000000+_

If the pattern does not match or the new label for v is ambiguous,
reject; otherwise, repeat.

= The invariant is maintained.

= The word encoded in the path goes consistently from Ty; to Tp(;_1).

25/30

The algorithm: a high-level idea (2/2)

In each node v of G:

© Apply the recursive definition of Thue—Morse backwards:

0+ 1+ 1+ O+ 1+ O+ O+ 1+ 1+ O+ O+ 1+ O+ 1+ 1+ O+

§ ¢
0000000000+ 1111111111+ _1111111111+_0000000000+_

If the pattern does not match or the new label for v is ambiguous,
reject; otherwise, repeat.

= The invariant is maintained.

= The word encoded in the path goes consistently from Ty; to Tp(;_1).

@ If the word matches | _O+_| or |_0+_1+_1+ O+_|, accept.

(Here | denotes the end of the path.)
25 /30

Examples (1/3)

@ Path graph, yes-instance:

0110100110010110_

| (unambiguous substitutions)
_0000000_1111111 1111111 0000000_

I

accept

26/30

Examples (2/3)

@ Path graph, no-instance:

0.110100.110100.1

_0000000_1111111_...
.._0000000_1111111_
Il (ambiguous substitutions)

reject

27/30

Examples (3/3)

@ Cycle graph:

0.110100110010110

I (unambiguous substitutions)

_0000000_1111111_1111111_0000000

I (no matches)

reject

28/30

Complexity

@ The substitutions involve constant number of blocks separated by s
= constant space is enough.

@ Need to receive information from the other end of the path
= Q(n) time is needed — even if we have unique IDs or randomness.

o Substitution phase i takes O(c') rounds (c constant), O(log n) phases
= O(n) time is enough.

29/30

Conclusion

@ Distributed time complexity is now a well-established topic.

@ Research on distributed space complexity is still in its infancy.

@ We proved a strong separation between constant space and constant
time by introducing a graph problem that

e can be solved in constant space in a very limited model,
e requires linear time in strong models (e.g. LOCAL with randomness).

@ However, our problem is highly artificial. It is open, whether there exist

e natural graph problems, or
o LCL problems

with the above properties.

30/30

Conclusion

@ Distributed time complexity is now a well-established topic.

@ Research on distributed space complexity is still in its infancy.

@ We proved a strong separation between constant space and constant
time by introducing a graph problem that

e can be solved in constant space in a very limited model,
e requires linear time in strong models (e.g. LOCAL with randomness).

@ However, our problem is highly artificial. It is open, whether there exist

e natural graph problems, or
o LCL problems

with the above properties.

Thanks!

30/30

	Introduction to distributed computing
	Time and space
	Research on distributed time complexity
	Case study: constant space and non-constant time

