
Time and space in distributed computing

Tuomo Lempiäinen

Spring meeting of logicians

17 May 2019

Tampere

Outline

1 Introduction to distributed computing

2 Time and space

3 Research on distributed time complexity

4 Case study: constant space and non-constant time

2 / 30

What is distributed computing?

In distributed computing, we study systems that consists of multiple
computational entities or nodes that communicate with each other.

m1 →
← m2

3 / 30

Distributed systems in the wild

Distributed computing is a very general concept.

Similar principles apply to biological organisms, computer networks,
human societies, . . .

4 / 30

Message-passing models of distributed computing

Nodes are computational units, edges
are communication links.

5 / 30

Message-passing models of distributed computing

Nodes are computational units, edges
are communication links.

5 / 30

Message-passing models of distributed computing

Nodes are computational units, edges
are communication links.

Each node

runs an identical algorithm,

communicates with its
neighbouring nodes,

halts and produces its own local
output.

5 / 30

Message-passing models of distributed computing

Nodes are computational units, edges
are communication links.

Numerous models that differ in the
details, e.g. how nodes can distinguish

themselves from others,

received messages.

5 / 30

Communication between nodes

←
a

b
→

Synchronous communication rounds.

On each round, every node

1 sends messages to its neighbours,

2 receives messages from its
neighbours,

3 updates its local state.

6 / 30

Communication between nodes

c →
←

d

Synchronous communication rounds.

On each round, every node

1 sends messages to its neighbours,

2 receives messages from its
neighbours,

3 updates its local state.

6 / 30

Communication between nodes

Synchronous communication rounds.

On each round, every node

1 sends messages to its neighbours,

2 receives messages from its
neighbours,

3 updates its local state.

6 / 30

Communication between nodes

Round 1.

Initially, nodes are only aware of
themselves.

By exchanging messages, nodes
gain more information on the
network structure.

Number of rounds = distance.

7 / 30

Communication between nodes

Round 2.

Initially, nodes are only aware of
themselves.

By exchanging messages, nodes
gain more information on the
network structure.

Number of rounds = distance.

7 / 30

Communication between nodes

Round 3.

Initially, nodes are only aware of
themselves.

By exchanging messages, nodes
gain more information on the
network structure.

Number of rounds = distance.

7 / 30

Communication between nodes

Round 4.

Initially, nodes are only aware of
themselves.

By exchanging messages, nodes
gain more information on the
network structure.

Number of rounds = distance.

7 / 30

Graph problems

Problem instance = communication graph (+ local input labelling).

Example: proper node 3-colouring.

Each node has to halt and output its own colour.

⇒

8 / 30

Computational complexity

Time complexity: the number of communication rounds until all nodes
have halted.

vs.

9 / 30

Computational complexity

Space complexity: the number of bits needed to encode all the states
that are visited at least once.

vs.

9 / 30

Computational complexity

Time complexity: the number of communication rounds until all nodes
have halted.

Space complexity: the number of bits needed to encode all the states
that are visited at least once.

. . . as a function of n, over all graphs of n nodes.

9 / 30

Research on distributed time complexity

The most-studied setting:

LOCAL model of computing: nodes have unique identifiers.
Locally-checkable labelling (LCL) problems: solutions can be verified in
constant time.

Cycle and path graphs:

Initiated by Naor and Stockmeyer (1995).
Chang, Kopelowitz, Pettie (2016): only O(1), Θ(log∗ n) and Θ(n) are
possible.

General bounded-degree graphs:

Lots of progress recently.
Complexities between ω(log∗ n) and o(n).
A gap between ω(log∗ n) and o(log n).
Complexity Θ(n1/k) for all k.
. . .

10 / 30

Research on distributed time complexity

The most-studied setting:

LOCAL model of computing: nodes have unique identifiers.
Locally-checkable labelling (LCL) problems: solutions can be verified in
constant time.

Cycle and path graphs:

Initiated by Naor and Stockmeyer (1995).
Chang, Kopelowitz, Pettie (2016): only O(1), Θ(log∗ n) and Θ(n) are
possible.

General bounded-degree graphs:

Lots of progress recently.
Complexities between ω(log∗ n) and o(n).
A gap between ω(log∗ n) and o(log n).
Complexity Θ(n1/k) for all k.
. . .

10 / 30

What about space complexity?

A well-established topic in centralised complexity theory.

For example, NP ⊆ PSPACE ⊆ EXP.

In the distributed setting, constant-space computation has been
studied (e.g. cellular automata)

. . . but the relationship between space and time is mostly an unexplored
area.

11 / 30

Case study: constant space and non-constant time

Lempiäinen & Suomela

Constant space and non-constant time in distributed computing

Proc. 21st International Conference on Principles of Distributed Systems
(OPODIS 2017), Lisbon, Portugal

12 / 30

Time vs. space in the distributed setting

A message-passing model.

Constant time complexity ⇒ constant space complexity.

Does the converse hold?

13 / 30

Time vs. space in the distributed setting

A message-passing model.

Constant time complexity ⇒ constant space complexity.

Does the converse hold?

More specifically: does there exist a distributed graph problem that is

solvable in constant space,
not solvable in constant time?

13 / 30

Time vs. space in the distributed setting

A message-passing model.

Constant time complexity ⇒ constant space complexity.

Does the converse hold?

More specifically: does there exist a distributed graph problem that is

solvable in constant space,
not solvable in constant time?

Our result: YES, constant space and constant time can be separated!

13 / 30

What are the right assumptions? (1/2)

Easy to construct constant-space non-constant-time problems if

promise that the graph is a path, or
nodes do not need to halt.

Count the distance modulo 2 to the nearest degree-1 node:

14 / 30

What are the right assumptions? (1/2)

Easy to construct constant-space non-constant-time problems if

promise that the graph is a path, or
nodes do not need to halt.

Count the distance modulo 2 to the nearest degree-1 node:

0 0

14 / 30

What are the right assumptions? (1/2)

Easy to construct constant-space non-constant-time problems if

promise that the graph is a path, or
nodes do not need to halt.

Count the distance modulo 2 to the nearest degree-1 node:

0 1 1 0

14 / 30

What are the right assumptions? (1/2)

Easy to construct constant-space non-constant-time problems if

promise that the graph is a path, or
nodes do not need to halt.

Count the distance modulo 2 to the nearest degree-1 node:

0 1 0 0 1 0

14 / 30

What are the right assumptions? (1/2)

Easy to construct constant-space non-constant-time problems if

promise that the graph is a path, or
nodes do not need to halt.

Count the distance modulo 2 to the nearest degree-1 node:

0 1 0 1 1 0 1 0

14 / 30

What are the right assumptions? (1/2)

Easy to construct constant-space non-constant-time problems if

promise that the graph is a path, or
nodes do not need to halt.

Count the distance modulo 2 to the nearest degree-1 node:

0 1 0 1 1 0 1 0

But what if the input is a cycle?

14 / 30

What are the right assumptions? (1/2)

Easy to construct constant-space non-constant-time problems if

promise that the graph is a path, or
nodes do not need to halt.

Count the distance modulo 2 to the nearest degree-1 node:

0 1 0 1 1 0 1 0

But what if the input is a cycle?

Our result does not require any promises about the input.

14 / 30

What are the right assumptions? (2/2)

To achieve a strong separation result, we want a graph problem Π that

is solvable in constant space in a very weak model of computation,
cannot be solved in constant time even in a very strong model.

Hence, we will present an algorithm for Π in a very weak model of
computation:

no unique IDs,
no randomness,
only constant-size local inputs,
only weak communication capabilities.

15 / 30

Model of computation

Let G = (V ,E) be a graph. An input for G is a function f : V → I , where
I is a finite set.

A distributed state machine is a tuple A = (S ,H, σ0,M, µ, σ), where

S is a set of states,

H ⊆ S is a finite set of halting states,

σ0 : N× I → S is an initialisation function,

M is a set of possible messages,

µ : S → M is a function that constructs the outgoing messages,

σ : S × P(M)→ S is a function that defines the state transitions, so
that σ(h,M) = h for each h ∈ H and M∈ P(M).

16 / 30

Model of computation

The execution of A on (G , f):

The state of the system in round r ∈ N is xr : V → S .

Set x0(v) = σo(deg(v), f (v)) for each v ∈ V .

Let Ar+1(v) = {µ(xr (u)) : u ∈ N(v)} denote the set of messages
received by node v in round r + 1.

The new state of each v ∈ V is xr+1(v) = σ(xr (v),Ar+1(v)).

17 / 30

Complexity measures

The running time of A on (G , f) is the smallest t ∈ N for which
xt(v) ∈ H holds for all v ∈ V .

The output of A on (G , f) is xt : V → H, where t is the running time.

The space usage of A on (G , f) is⌈
log2

∣∣{xr (v) ∈ S : r ∈ [0, t] and v ∈ V }
∣∣⌉,

where t ∈ N is the running time of A on (G , f).

The constant-time version of this model is captured by the basic modal
logic (Hella et al. 2012).

18 / 30

Complexity measures

The running time of A on (G , f) is the smallest t ∈ N for which
xt(v) ∈ H holds for all v ∈ V .

The output of A on (G , f) is xt : V → H, where t is the running time.

The space usage of A on (G , f) is⌈
log2

∣∣{xr (v) ∈ S : r ∈ [0, t] and v ∈ V }
∣∣⌉,

where t ∈ N is the running time of A on (G , f).

The constant-time version of this model is captured by the basic modal
logic (Hella et al. 2012).

18 / 30

Our main result

Problem

Construct a graph problem Π such that

1 there exists a constant-space algorithm A that halts and solves Π in all
(finite, simple, and connected) graphs, and

2 Π is not solvable by any constant-time algorithm.

Theorem

There does exist a decision graph problem Π that satisfies the above
requirements (1) and (2).

19 / 30

Our main result

Problem

Construct a graph problem Π such that

1 there exists a constant-space algorithm A that halts and solves Π in all
(finite, simple, and connected) graphs, and

2 Π is not solvable by any constant-time algorithm.

Theorem (Stronger result)

There does exist a decision graph problem Π that satisfies the above
requirements (1) and (2), and that is not solvable by any sublinear-time
algorithm even in the class of graphs of maximum degree 2.

19 / 30

An intriguing binary sequence

The Thue–Morse sequence is the infinite sequence (over {0, 1}) whose
prefixes Ti of length 2i are defined as follows:

start with T0 = 0,
obtain Ti from Ti−1 by mapping 0 7→ 01 and 1 7→ 10.

First steps:
T0 = 0
T1 = 01
T2 = 0110
T3 = 01101001
T4 = 0110100110010110

...

20 / 30

An intriguing binary sequence

The Thue–Morse sequence is the infinite sequence (over {0, 1}) whose
prefixes Ti of length 2i are defined as follows:

start with T0 = 0,
obtain Ti from Ti−1 by mapping 0 7→ 01 and 1 7→ 10.

First steps:
T0 = 0
T1 = 01
T2 = 0110
T3 = 01101001
T4 = 0110100110010110

...

Interesting properties:
For each i ∈ N, T2i is a palindrome.
The sequence does not contain any cubes, i.e. subwords XXX for any
X ∈ {0, 1}∗.

20 / 30

An intriguing binary sequence

The Thue–Morse sequence is the infinite sequence (over {0, 1}) whose
prefixes Ti of length 2i are defined as follows:

start with T0 = 0,
obtain Ti from Ti−1 by mapping 0 7→ 01 and 1 7→ 10.

First steps:
T0 = 0
T1 = 01
T2 = 0110
T3 = 01101001
T4 = 0110100110010110

...

The sequence was used previously in distributed computing by Kuusisto
(2014).

20 / 30

Towards a decision graph problem

Could we separate paths labelled with a prefix Ti from all other paths
and cycles by a distributed algorithm?

The recursive definition of Thue–Morse can be applied backwards
⇒ Given sequence Ti , get back to T0 = 0.

. . .TiTiTi . . . does not appear in the Thue–Morse sequence
⇒ A cycle graph looks different from a path graph.

A promising idea:

Yes-instance: a path labelled with a prefix of the Thue–Morse sequence.
No-instance: anything else.

21 / 30

Formalising the idea: the graph problem Π (1/2)

Define the set of valid words over {0, 1, }:
0 is valid,

if X is valid and Y is obtained from X by mapping 0 7→ 0 1 1 0 and
1 7→ 1 0 0 1, then Y is valid.

The valid words are prefixes of length 4k of the Thue–Morse sequence,
with a separator added at the beginning, between each pair of
consecutive symbols, and at the end.

22 / 30

The decision graph problem Π (2/2)

Local inputs from {A,B,C} × {0, 1, }.
Local outputs from {yes, no}.

An instance is a yes-instance if and only if

the graph is a path graph,
the first parts of the local inputs define a consistent orientation for the
path: . . . ABCABCABC. . . ,
the second parts of the local inputs define a valid word over {0, 1, }.

23 / 30

The algorithm: a high-level idea (1/2)

In each node v of G :

1 Verify degree and orientation: if deg(v) ∈ {1, 2} and the orientation is
locally consistent, continue; otherwise, reject.
⇒ G is essentially an oriented path, with a port-numbering.

2 Verify the input word locally: if every other label is from {0, 1} and
every other label is , continue; otherwise, reject.
⇒ Copy the input label as the current label of v .
⇒ Maintain an invariant: always a separator at some finite distance.

24 / 30

The algorithm: a high-level idea (1/2)

In each node v of G :

1 Verify degree and orientation: if deg(v) ∈ {1, 2} and the orientation is
locally consistent, continue; otherwise, reject.
⇒ G is essentially an oriented path, with a port-numbering.

2 Verify the input word locally: if every other label is from {0, 1} and
every other label is , continue; otherwise, reject.
⇒ Copy the input label as the current label of v .
⇒ Maintain an invariant: always a separator at some finite distance.

24 / 30

The algorithm: a high-level idea (2/2)

In each node v of G :

3 Apply the recursive definition of Thue–Morse backwards:

0+ 1+ 1+ 0+ 1+ 0+ 0+ 1+ 1+ 0+ 0+ 1+ 0+ 1+ 1+ 0+

0000000000+ 1111111111+ 1111111111+ 0000000000+

If the pattern does not match or the new label for v is ambiguous,
reject; otherwise, repeat.
⇒ The invariant is maintained.
⇒ The word encoded in the path goes consistently from T2j to T2(j−1).

4 If the word matches | 0+ | or | 0+ 1+ 1+ 0+ |, accept.

(Here | denotes the end of the path.)

25 / 30

The algorithm: a high-level idea (2/2)

In each node v of G :

3 Apply the recursive definition of Thue–Morse backwards:

0+ 1+ 1+ 0+ 1+ 0+ 0+ 1+ 1+ 0+ 0+ 1+ 0+ 1+ 1+ 0+

0000000000+ 1111111111+ 1111111111+ 0000000000+

If the pattern does not match or the new label for v is ambiguous,
reject; otherwise, repeat.
⇒ The invariant is maintained.
⇒ The word encoded in the path goes consistently from T2j to T2(j−1).

4 If the word matches | 0+ | or | 0+ 1+ 1+ 0+ |, accept.

(Here | denotes the end of the path.)

25 / 30

Examples (1/3)

Path graph, yes-instance:

0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0

⇓ (unambiguous substitutions)

0000000 1111111 1111111 0000000

⇓
accept

26 / 30

Examples (2/3)

Path graph, no-instance:

0 1 1 0 1 0 0 1 1 0 1 0 0 1

⇓
0000000 1111111 . . .

. . . 0000000 1111111

⇓ (ambiguous substitutions)

reject

27 / 30

Examples (3/3)

Cycle graph:

0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0

⇓ (unambiguous substitutions)

0000000 1111111 1111111 0000000

⇓ (no matches)

reject

28 / 30

Complexity

The substitutions involve constant number of blocks separated by ′s
⇒ constant space is enough.

Need to receive information from the other end of the path
⇒ Ω(n) time is needed – even if we have unique IDs or randomness.

Substitution phase i takes O(c i) rounds (c constant), O(log n) phases
⇒ O(n) time is enough.

29 / 30

Conclusion

Distributed time complexity is now a well-established topic.

Research on distributed space complexity is still in its infancy.

We proved a strong separation between constant space and constant
time by introducing a graph problem that

can be solved in constant space in a very limited model,
requires linear time in strong models (e.g. LOCAL with randomness).

However, our problem is highly artificial. It is open, whether there exist

natural graph problems, or
LCL problems

with the above properties.

Thanks!

30 / 30

Conclusion

Distributed time complexity is now a well-established topic.

Research on distributed space complexity is still in its infancy.

We proved a strong separation between constant space and constant
time by introducing a graph problem that

can be solved in constant space in a very limited model,
requires linear time in strong models (e.g. LOCAL with randomness).

However, our problem is highly artificial. It is open, whether there exist

natural graph problems, or
LCL problems

with the above properties.

Thanks!
30 / 30

	Introduction to distributed computing
	Time and space
	Research on distributed time complexity
	Case study: constant space and non-constant time

