Constant Space and Non-Constant Time in Distributed Computing

Tuomo Lempiäinen and Jukka Suomela

Aalto University, Finland

OPODIS
20th December 2017
Lisbon, Portugal

Time complexity versus space complexity

- A well-established topic in centralised complexity theory.
- For example, NP \subseteq PSPACE \subseteq EXP.
- What can be said in the distributed setting?
- A message-passing model:
- problem instance $=$ communication graph + local inputs,
- time $=$ number of synchronous communication rounds,
- space $=$ number of bits per node needed to represent the states.

Time vs. space in the distributed setting

- A message-passing model:
- problem instance $=$ communication graph + local inputs,
- time $=$ number of synchronous communication rounds,
- space $=$ number of bits per node needed to represent the states.
- Constant time complexity \Rightarrow constant space complexity.
- Does the converse hold?

Time vs. space in the distributed setting

- A message-passing model:
- problem instance $=$ communication graph + local inputs,
- time $=$ number of synchronous communication rounds,
- space $=$ number of bits per node needed to represent the states.
- Constant time complexity \Rightarrow constant space complexity.
- Does the converse hold?
- More specifically: does there exist a distributed graph problem that is
- solvable in constant space,
- not solvable in constant time?

Time vs. space in the distributed setting

- A message-passing model:
- problem instance $=$ communication graph + local inputs,
- time $=$ number of synchronous communication rounds,
- space $=$ number of bits per node needed to represent the states.
- More specifically: does there exist a distributed graph problem that is
- solvable in constant space,
- not solvable in constant time?
- Our result: YES, constant space and constant time can be separated!

What are the right assumptions? (1/2)

- Easy to construct constant-space non-constant-time problems if
- promise that the graph is a path, or
- nodes do not need to halt.
- Count the distance modulo 2 to the nearest degree- 1 node:

What are the right assumptions? (1/2)

- Easy to construct constant-space non-constant-time problems if
- promise that the graph is a path, or
- nodes do not need to halt.
- Count the distance modulo 2 to the nearest degree- 1 node:

What are the right assumptions? (1/2)

- Easy to construct constant-space non-constant-time problems if
- promise that the graph is a path, or
- nodes do not need to halt.
- Count the distance modulo 2 to the nearest degree- 1 node:

What are the right assumptions? $(1 / 2)$

- Easy to construct constant-space non-constant-time problems if
- promise that the graph is a path, or
- nodes do not need to halt.
- Count the distance modulo 2 to the nearest degree- 1 node:

What are the right assumptions? $(1 / 2)$

- Easy to construct constant-space non-constant-time problems if
- promise that the graph is a path, or
- nodes do not need to halt.
- Count the distance modulo 2 to the nearest degree- 1 node:

What are the right assumptions? $(1 / 2)$

- Easy to construct constant-space non-constant-time problems if
- promise that the graph is a path, or
- nodes do not need to halt.
- Count the distance modulo 2 to the nearest degree- 1 node:

- But what if the input is a cycle?

What are the right assumptions? $(1 / 2)$

- Easy to construct constant-space non-constant-time problems if
- promise that the graph is a path, or
- nodes do not need to halt.
- Count the distance modulo 2 to the nearest degree- 1 node:

- But what if the input is a cycle?

- Our result does not require any promises about the input.

What are the right assumptions? (2/2)

- To achieve a strong separation result, we want a graph problem Π that
- is solvable in constant space in a very weak model of computation,
- cannot be solved in constant time even in a very strong model.
- Hence, we will present an algorithm for Π in a very weak model of computation:
- no unique IDs,
- no randomness,
- only constant-size local inputs,
- only weak communication capabilities.

Model of computation

- A simple finite connected undirected graph, with constant-size local inputs.
- An identical deterministic state machine on each node.

Model of computation

- A simple finite connected undirected graph, with constant-size local inputs.

- An identical deterministic state machine on each node.
- Computation proceeds in synchronous rounds:
(1) broadcast a message to neighbours,
(2) receive a set of messages,
(3) set a new state based on previous state and received messages.

Model of computation

- A simple finite connected undirected graph, with constant-size local inputs.
- An identical deterministic state machine on each node.
- Computation proceeds in synchronous rounds:
(1) broadcast a message to neighbours,
(2) receive a set of messages,
(3) set a new state based on previous state and received messages.
- In all graphs, each node eventually halts and produces an output.

Complexity measures

Given an algorithm (a state machine), its

- running time or time complexity is the number of communication rounds until all nodes have halted,
- space complexity is the number of bits needed to encode all the states that are visited at least once,
as a function of n, over all graphs of n nodes.

Our main result

Problem

Construct a graph problem Π such that
(1) there exists a constant-space algorithm \mathcal{A} that halts and solves Π in all (finite, simple, and connected) graphs, and
(2) Π is not solvable by any constant-time algorithm.

Theorem

There does exist a decision graph problem Π that satisfies the above requirements (1) and (2).

Our main result

Problem

Construct a graph problem Π such that
(1) there exists a constant-space algorithm \mathcal{A} that halts and solves Π in all (finite, simple, and connected) graphs, and
(2) Π is not solvable by any constant-time algorithm.

Theorem (Stronger result)

There does exist a decision graph problem Π that satisfies the above requirements (1) and (2), and that is not solvable by any sublinear-time algorithm even in the class of graphs of maximum degree 2.

An intriguing binary sequence

- The Thue-Morse sequence is the infinite sequence (over $\{0,1\}$) whose prefixes T_{i} of length 2^{i} are defined as follows:
- start with $T_{0}=0$,
- obtain T_{i} from T_{i-1} by mapping $0 \mapsto 01$ and $1 \mapsto 10$.
- First steps:

$$
\begin{aligned}
& T_{0}=0 \\
& T_{1}=01 \\
& T_{2}=0110 \\
& T_{3}=01101001 \\
& T_{4}=0110100110010110
\end{aligned}
$$

An intriguing binary sequence

- The Thue-Morse sequence is the infinite sequence (over $\{0,1\}$) whose prefixes T_{i} of length 2^{i} are defined as follows:
- start with $T_{0}=0$,
- obtain T_{i} from T_{i-1} by mapping $0 \mapsto 01$ and $1 \mapsto 10$.
- First steps:

$$
\begin{aligned}
& T_{0}=0 \\
& T_{1}=01 \\
& T_{2}=0110 \\
& T_{3}=01101001 \\
& T_{4}=0110100110010110
\end{aligned}
$$

- Interesting properties:
- For each $i \in \mathbb{N}, T_{2 i}$ is a palindrome.
- The sequence does not contain any cubes, i.e. subwords $X X X$ for any $X \in\{0,1\}^{*}$.

Towards a decision graph problem

- Could we separate paths labelled with a prefix T_{i} from all other paths and cycles by a distributed algorithm?
- The recursive definition of Thue-Morse can be applied backwards \Rightarrow Given sequence T_{i}, get back to $T_{0}=0$.
- ... $T_{i} T_{i} T_{i} \ldots$ does not appear in the Thue-Morse sequence \Rightarrow A cycle graph looks different from a path graph.
- A promising idea:
- Yes-instance: a path labelled with a prefix of the Thue-Morse sequence.
- No-instance: anything else.

Formalising the idea: the graph problem $\Pi(1 / 2)$

- Define the set of valid words over $\left\{0,1,{ }_{_}\right\}$:
- _ 0 i is valid,
- if X is valid and Y is obtained from X by mapping $0 \mapsto 0 _1 _1 _0$ and $1 \mapsto 1 _0 _0 _1$, then Y is valid.
- The valid words are prefixes of length 4^{k} of the Thue-Morse sequence, with a separator _ added at the beginning, between each pair of consecutive symbols, and at the end.

The decision graph problem $П(2 / 2)$

- Local inputs from $\{\mathrm{A}, \mathrm{B}, \mathrm{C}\} \times\left\{0,1,{ }_{-}\right\}$.
- Local outputs from $\{y e s, n o\}$.
- An instance is a yes-instance if and only if
- the graph is a path graph,
- the first parts of the local inputs define a consistent orientation for the path: ... ABCABCABC...,
- the second parts of the local inputs define a valid word over $\{0,1, \ldots\}$.

The algorithm: a high-level idea ($1 / 2$)

In each node v of G :
(1) Verify degree and orientation: if $\operatorname{deg}(v) \in\{1,2\}$ and the orientation is locally consistent, continue; otherwise, reject.
$\Rightarrow G$ is essentially an oriented path, with a port-numbering.

The algorithm: a high-level idea ($1 / 2$)

In each node v of G :
(1) Verify degree and orientation: if $\operatorname{deg}(v) \in\{1,2\}$ and the orientation is locally consistent, continue; otherwise, reject.
$\Rightarrow G$ is essentially an oriented path, with a port-numbering.
(2) Verify the input word locally: if every other label is from $\{0,1\}$ and every other label is _, continue; otherwise, reject.
\Rightarrow Copy the input label as the current label of v.
\Rightarrow Maintain an invariant: always a separator _ at some finite distance.

The algorithm: a high-level idea (2/2)

In each node v of G :
(3) Apply the recursive definition of Thue-Morse backwards:

$$
\begin{aligned}
& \text { _0000000000+_11111111111+_ _11111111111+_0000000000+_ }
\end{aligned}
$$

If the pattern does not match or the new label for v is ambiguous, reject; otherwise, repeat.
\Rightarrow The invariant is maintained.
\Rightarrow The word encoded in the path goes consistently from $T_{2 j}$ to $T_{2(j-1)}$.

The algorithm: a high-level idea (2/2)

In each node v of G :
(3) Apply the recursive definition of Thue-Morse backwards:

$$
\begin{aligned}
& \text { _0000000000+_11111111111+_ _11111111111+_0000000000+_ }
\end{aligned}
$$

If the pattern does not match or the new label for v is ambiguous, reject; otherwise, repeat.
\Rightarrow The invariant is maintained.
\Rightarrow The word encoded in the path goes consistently from $T_{2 j}$ to $T_{2(j-1)}$.
(1) If the word matches $\left|_0+_\right|$or $\left|_0+_1+_1+_0+_\right|$, accept. (Here \mid denotes the end of the path.)

Examples (1/3)

- Path graph, yes-instance:

$$
\begin{gathered}
\text { _0_1_1_0_1_0_0_1_1_0_0_1_0_1_1_0_ } \\
\Downarrow \quad \text { (unambiguous substitutions) } \\
\text { _0000000_1111111_11111111_0000000_ } \\
\Downarrow \\
\text { accept }
\end{gathered}
$$

Examples (2/3)

- Path graph, no-instance:

$$
\begin{gathered}
\text { _0_1_1_0_1_0_0_1_1_0_1_0_0_1_ } \\
\Downarrow \\
\text { _0000000_1111111_... } \\
\ldots .0000000 _1111111 _ \\
\Downarrow \quad \text { (ambiguous substitutions) } \\
\text { reject }
\end{gathered}
$$

Examples (3/3)

- Cycle graph:

$$
\begin{gathered}
{\left[\begin{array}{c}
0 _1 _1 _0 _1 _0 _0 _1 _1 _0 _0 _1 _0 _1 _1 _0 \\
\Downarrow \quad \text { (unambiguous substitutions) } \\
\square \text { (no matches) } \\
\text { reject }
\end{array}\right.}
\end{gathered}
$$

Complexity

- The substitutions involve constant number of blocks separated by _'s \Rightarrow constant space is enough.
- Need to receive information from the other end of the path $\Rightarrow \Omega(n)$ time is needed - even if we have unique IDs or randomness.
- Substitution phase i takes $O\left(c^{i}\right)$ rounds (c constant), $O(\log n)$ phases $\Rightarrow O(n)$ time is enough.

Conclusion

- We proved a strong separation between constant space and constant time by introducing a graph problem that
- can be solved in constant space in a very limited model,
- requires linear time in strong models (e.g. LOCAL with randomness).
- However, our problem is highly artificial. It is open, whether there exist
- natural graph problems, or
- LCL (locally checkable labelling) problems
with the above properties.

Conclusion

- We proved a strong separation between constant space and constant time by introducing a graph problem that
- can be solved in constant space in a very limited model,
- requires linear time in strong models (e.g. LOCAL with randomness).
- However, our problem is highly artificial. It is open, whether there exist
- natural graph problems, or
- LCL (locally checkable labelling) problems
with the above properties.

Thanks! Questions?

