Constant Space and Non-Constant Time

in Distributed Computing

Tuomo Lempidinen and Jukka Suomela

Aalto University, Finland

OPODIS
20th December 2017
Lisbon, Portugal

Time complexity versus space complexity

@ A well-established topic in centralised complexity theory.
@ For example, NP C PSPACE C EXP.

@ What can be said in the distributed setting?
@ A message-passing model:

e problem instance = communication graph + local inputs,
e time = number of synchronous communication rounds,
e space = number of bits per node needed to represent the states.

Time vs. space in the distributed setting

@ A message-passing model:

e problem instance = communication graph + local inputs,
e time = number of synchronous communication rounds,
e space = number of bits per node needed to represent the states.

@ Constant time complexity = constant space complexity.
@ Does the converse hold?

Time vs. space in the distributed setting

@ A message-passing model:

e problem instance = communication graph + local inputs,
e time = number of synchronous communication rounds,
e space = number of bits per node needed to represent the states.

o Constant time complexity = constant space complexity.

@ Does the converse hold?

@ More specifically: does there exist a distributed graph problem that is

e solvable in constant space,
e not solvable in constant time?

Time vs. space in the distributed setting

@ A message-passing model:

e problem instance = communication graph + local inputs,
e time = number of synchronous communication rounds,
e space = number of bits per node needed to represent the states.

@ More specifically: does there exist a distributed graph problem that is
e solvable in constant space,
e not solvable in constant time?

@ Our result: YES, constant space and constant time can be separated!

What are the right assumptions? (1/2)

@ Easy to construct constant-space non-constant-time problems if

e promise that the graph is a path, or
e nodes do not need to halt.

@ Count the distance modulo 2 to the nearest degree-1 node:

O-O-O0-O0O0000

What are the right assumptions? (1/2)

@ Easy to construct constant-space non-constant-time problems if

e promise that the graph is a path, or
e nodes do not need to halt.

@ Count the distance modulo 2 to the nearest degree-1 node:

What are the right assumptions? (1/2)

@ Easy to construct constant-space non-constant-time problems if

e promise that the graph is a path, or
e nodes do not need to halt.

@ Count the distance modulo 2 to the nearest degree-1 node:

What are the right assumptions? (1/2)

@ Easy to construct constant-space non-constant-time problems if

e promise that the graph is a path, or
e nodes do not need to halt.

@ Count the distance modulo 2 to the nearest degree-1 node:

What are the right assumptions? (1/2)

@ Easy to construct constant-space non-constant-time problems if

e promise that the graph is a path, or
e nodes do not need to halt.

@ Count the distance modulo 2 to the nearest degree-1 node:

What are the right assumptions? (1/2)

@ Easy to construct constant-space non-constant-time problems if

e promise that the graph is a path, or
e nodes do not need to halt.

@ Count the distance modulo 2 to the nearest degree-1 node:

o But what if the input is a cycle?

What are the right assumptions? (1/2)

@ Easy to construct constant-space non-constant-time problems if

e promise that the graph is a path, or
e nodes do not need to halt.

@ Count the distance modulo 2 to the nearest degree-1 node:

@ But what if the input is a cycle?

@ Our result does not require any promises about the input.

What are the right assumptions? (2/2)

@ To achieve a strong separation result, we want a graph problem I1 that

@ is solvable in constant space in a very weak model of computation,
e cannot be solved in constant time even in a very strong model.

@ Hence, we will present an algorithm for I1 in a very weak model of
computation:

no unique IDs,

no randomness,

only constant-size local inputs,

only weak communication capabilities.

Model of computation

@ A simple finite connected undirected
graph, with constant-size local inputs.

e 0 @ An identical deterministic state machine
on each node.

Model of computation

@ A simple finite connected undirected
graph, with constant-size local inputs.

@ An identical deterministic state machine
on each node.

@ Computation proceeds in synchronous
rounds:

© broadcast a message to neighbours,

@ receive a set of messages,

© set a new state based on previous state
and received messages.

Model of computation

@ A simple finite connected undirected
graph, with constant-size local inputs.

e 0 @ An identical deterministic state machine
on each node.
@ Computation proceeds in synchronous
rounds:

© broadcast a message to neighbours,
@ receive a set of messages,

e © set a new state based on previous state

0 and received messages.

@ In all graphs, each node eventually halts
and produces an output.

Complexity measures

a 0 Given an algorithm (a state machine), its
@ running time or time complexity is the
number of communication rounds until
all nodes have halted,

@ space complexity is the number of bits
a needed to encode all the states that are

visited at least once,
e‘e as a function of n, over all graphs of n nodes.

Our main result

Construct a graph problem Tl such that

@ there exists a constant-space algorithm A that halts and solves I in all
(finite, simple, and connected) graphs, and

@ [is not solvable by any constant-time algorithm.

There does exist a decision graph problem [1 that satisfies the above
requirements (1) and (2).

Our main result

Problem

Construct a graph problem T1 such that

@ there exists a constant-space algorithm A that halts and solves I in all
(finite, simple, and connected) graphs, and

@ 1 is not solvable by any constant-time algorithm.

Theorem (Stronger result)

There does exist a decision graph problem [1 that satisfies the above
requirements (1) and (2), and that is not solvable by any sublinear-time
algorithm even in the class of graphs of maximum degree 2.

An intriguing binary sequence

o The Thue—Morse sequence is the infinite sequence (over {0,1}) whose
prefixes T; of length 2/ are defined as follows:
e start with To =0,
e obtain T; from T;_; by mapping 0 — 01 and 1 +— 10.

@ First steps:

To=0
T, =01
T, = 0110

T3 = 01101001
T, = 0110100110010110

An intriguing binary sequence

o The Thue—Morse sequence is the infinite sequence (over {0,1}) whose
prefixes T; of length 2/ are defined as follows:
e start with To =0,
e obtain T; from T;_; by mapping 0 — 01 and 1 +— 10.

@ First steps:

To=0
T, =01
T, = 0110

T3 = 01101001
T, = 0110100110010110

@ Interesting properties:
e For each i € N, T; is a palindrome.
e The sequence does not contain any cubes, i.e. subwords XXX for any
X €{0,1}".

Towards a decision graph problem

@ Could we separate paths labelled with a prefix T; from all other paths
and cycles by a distributed algorithm?

@ The recursive definition of Thue—Morse can be applied backwards
= Given sequence T;, get back to Tg = 0.

@ ... T;T;T;... does not appear in the Thue—Morse sequence
= A cycle graph looks different from a path graph.

@ A promising idea:

o Yes-instance: a path labelled with a prefix of the Thue—Morse sequence.
o No-instance: anything else.

10/19

Formalising the idea: the graph problem I (1/2)

@ Define the set of valid words over {0,1, _}:

e _0_isvalid,
e if X is valid and Y is obtained from X by mapping 0 — 0_1_1 0 and
1+— 10 0 1, then Y is valid.

@ The valid words are prefixes of length 4% of the Thue—Morse sequence,
with a separator _ added at the beginning, between each pair of
consecutive symbols, and at the end.

11/19

The decision graph problem 11 (2/2)

@ Local inputs from {A,B,C} x {0,1,_}.

@ Local outputs from {yes, no}.

@ An instance is a yes-instance if and only if
e the graph is a path graph,
o the first parts of the local inputs define a consistent orientation for the
path: ... ABCABCABC...,
o the second parts of the local inputs define a valid word over {0,1, _}.

12 /19

The algorithm: a high-level idea (1/2)

In each node v of G:

@ Verify degree and orientation: if deg(v) € {1,2} and the orientation is
locally consistent, continue; otherwise, reject.
= G is essentially an oriented path, with a port-numbering.

13/19

The algorithm: a high-level idea (1/2)

In each node v of G:

@ Verify degree and orientation: if deg(v) € {1,2} and the orientation is
locally consistent, continue; otherwise, reject.
= G is essentially an oriented path, with a port-numbering.

@ \Verify the input word locally: if every other label is from {0,1} and
every other label is _, continue; otherwise, reject.
= Copy the input label as the current label of v.
=- Maintain an invariant: always a separator _ at some finite distance.

13/19

The algorithm: a high-level idea (2/2)

In each node v of G:

© Apply the recursive definition of Thue—Morse backwards:

0+ 1+ 1+ O+ 1+ O+ O+ 1+ 1+ O+ O+ 1+ O+ 1+ 1+ O+

§ ¢
0000000000+ 1111111111+ _1111111111+_0000000000+_

If the pattern does not match or the new label for v is ambiguous,
reject; otherwise, repeat.

= The invariant is maintained.

= The word encoded in the path goes consistently from Ty; to Tp(;_1).

14 /19

The algorithm: a high-level idea (2/2)

In each node v of G:

© Apply the recursive definition of Thue—Morse backwards:

0+ 1+ 1+ O+ 1+ O+ O+ 1+ 1+ O+ O+ 1+ O+ 1+ 1+ O+

§ ¢
0000000000+ 1111111111+ _1111111111+_0000000000+_

If the pattern does not match or the new label for v is ambiguous,
reject; otherwise, repeat.

= The invariant is maintained.

= The word encoded in the path goes consistently from Ty; to Tp(;_1).

@ If the word matches | _O+_| or |_0+_1+_1+ O+_|, accept.

(Here | denotes the end of the path.)
14 /19

Examples (1/3)

@ Path graph, yes-instance:

.0.110100110010110

| (unambiguous substitutions)
_0000000_1111111_1111111_0000000_

4

accept

15/19

Examples (2/3)

@ Path graph, no-instance:

0110100.110100.1

_0000000_1111111_...
.._0000000_1111111_
|} (ambiguous substitutions)

reject

16/19

Examples (3/3)

@ Cycle graph:

0.110100110010110

(-)

| (unambiguous substitutions)

)

_0000000_1111111_1111111_0000000

—

I (no matches)

reject

17 /19

Complexity

@ The substitutions involve constant number of blocks separated by ’s
= constant space is enough.

@ Need to receive information from the other end of the path
= Q(n) time is needed — even if we have unique IDs or randomness.

o Substitution phase i takes O(c’) rounds (c constant), O(log n) phases
= O(n) time is enough.

18/19

Conclusion

@ We proved a strong separation between constant space and constant
time by introducing a graph problem that

e can be solved in constant space in a very limited model,
e requires linear time in strong models (e.g. LOCAL with randomness).

@ However, our problem is highly artificial. It is open, whether there exist

e natural graph problems, or
o LCL (locally checkable labelling) problems

with the above properties.

19/19

Conclusion

@ We proved a strong separation between constant space and constant
time by introducing a graph problem that

e can be solved in constant space in a very limited model,
e requires linear time in strong models (e.g. LOCAL with randomness).

@ However, our problem is highly artificial. It is open, whether there exist

e natural graph problems, or
o LCL (locally checkable labelling) problems

with the above properties.

Thanks! Questions?

19/19

