Constant Space and Non-Constant Time in Distributed Computing

Tuomo Lempiäinen and Jukka Suomela

Aalto University, Finland

OPODIS 20th December 2017 Lisbon, Portugal

- A well-established topic in centralised complexity theory.
- For example, NP \subseteq PSPACE \subseteq EXP.
- What can be said in the distributed setting?
- A message-passing model:
 - problem instance = communication graph + local inputs,
 - time = number of synchronous communication rounds,
 - space = number of bits per node needed to represent the states.

- A message-passing model:
 - problem instance = communication graph + local inputs,
 - time = number of synchronous communication rounds,
 - space = number of bits per node needed to represent the states.
- Constant time complexity \Rightarrow constant space complexity.
- Does the converse hold?

- A message-passing model:
 - problem instance = communication graph + local inputs,
 - time = number of synchronous communication rounds,
 - space = number of bits per node needed to represent the states.
- Constant time complexity \Rightarrow constant space complexity.
- Does the converse hold?
- More specifically: does there exist a distributed graph problem that is
 - solvable in constant space,
 - not solvable in constant time?

- A message-passing model:
 - problem instance = communication graph + local inputs,
 - time = number of synchronous communication rounds,
 - space = number of bits per node needed to represent the states.
- More specifically: does there exist a distributed graph problem that is
 - solvable in constant space,
 - not solvable in constant time?

• Our result: YES, constant space and constant time can be separated!

- Easy to construct constant-space non-constant-time problems if
 - promise that the graph is a path, or
 - nodes do not need to halt.
- Count the distance modulo 2 to the nearest degree-1 node:

- Easy to construct constant-space non-constant-time problems if
 - promise that the graph is a path, or
 - nodes do not need to halt.
- Count the distance modulo 2 to the nearest degree-1 node:

- Easy to construct constant-space non-constant-time problems if
 - promise that the graph is a path, or
 - nodes do not need to halt.
- Count the distance modulo 2 to the nearest degree-1 node:

- Easy to construct constant-space non-constant-time problems if
 - promise that the graph is a path, or
 - nodes do not need to halt.
- Count the distance modulo 2 to the nearest degree-1 node:

- Easy to construct constant-space non-constant-time problems if
 - promise that the graph is a path, or
 - nodes do not need to halt.
- Count the distance modulo 2 to the nearest degree-1 node:

$$\bigcirc -1 - \bigcirc -1 - \bigcirc -1 - \bigcirc -1 - \bigcirc$$

What are the right assumptions? (1/2)

- Easy to construct constant-space non-constant-time problems if
 - promise that the graph is a path, or
 - nodes do not need to halt.
- Count the distance modulo 2 to the nearest degree-1 node:

• But what if the input is a cycle?

What are the right assumptions? (1/2)

- Easy to construct constant-space non-constant-time problems if
 - promise that the graph is a path, or
 - nodes do not need to halt.
- Count the distance modulo 2 to the nearest degree-1 node:

• But what if the input is a cycle?

Our result does not require any promises about the input.

- To achieve a strong separation result, we want a graph problem Π that
 - is solvable in constant space in a very weak model of computation,
 - cannot be solved in constant time even in a very strong model.
- Hence, we will present an algorithm for Π in a very weak model of computation:
 - no unique IDs,
 - no randomness,
 - only constant-size local inputs,
 - only weak communication capabilities.

Model of computation

- A simple finite connected undirected graph, with constant-size local inputs.
- An identical deterministic state machine on each node.

Model of computation

- A simple finite connected undirected graph, with constant-size local inputs.
- An identical deterministic state machine on each node.
- Computation proceeds in synchronous rounds:
 - broadcast a message to neighbours,
 - 2 receive a set of messages,
 - set a new state based on previous state and received messages.

Model of computation

- A simple finite connected undirected graph, with constant-size local inputs.
- An identical deterministic state machine on each node.
- Computation proceeds in synchronous rounds:
 - broadcast a message to neighbours,
 - 2 receive a set of messages,
 - set a new state based on previous state and received messages.
- In all graphs, each node eventually halts and produces an output.

Given an algorithm (a state machine), its

- running time or time complexity is the number of communication rounds until all nodes have halted,
- space complexity is the number of bits needed to encode all the states that are visited at least once,

as a function of n, over all graphs of n nodes.

Problem

Construct a graph problem Π such that

- there exists a constant-space algorithm A that halts and solves ∏ in all (finite, simple, and connected) graphs, and
- **2** Π is not solvable by any constant-time algorithm.

Theorem

There does exist a decision graph problem Π that satisfies the above requirements (1) and (2).

Problem

Construct a graph problem Π such that

- there exists a constant-space algorithm A that halts and solves ∏ in all (finite, simple, and connected) graphs, and
- **2** Π is not solvable by any constant-time algorithm.

Theorem (Stronger result)

There does exist a decision graph problem Π that satisfies the above requirements (1) and (2), and that is not solvable by any sublinear-time algorithm even in the class of graphs of maximum degree 2.

An intriguing binary sequence

- The *Thue–Morse sequence* is the infinite sequence (over {0,1}) whose prefixes *T_i* of length 2^{*i*} are defined as follows:
 - start with $T_0 = 0$,
 - obtain T_i from T_{i-1} by mapping $0 \mapsto 01$ and $1 \mapsto 10$.
- First steps:
 - $T_0 = 0$
 - $T_1 = 01$
 - $T_2 = 0110$

$$T_3 = 01101001$$

 $T_4 = 0110100110010110$

An intriguing binary sequence

- The *Thue–Morse sequence* is the infinite sequence (over {0,1}) whose prefixes *T_i* of length 2^{*i*} are defined as follows:
 - start with $T_0 = 0$,
 - obtain T_i from T_{i-1} by mapping $0 \mapsto 01$ and $1 \mapsto 10$.
- First steps:
 - $T_0 = 0$
 - $T_1 = 01$
 - $T_2 = 0110$

$$T_3 = 01101001$$

 $T_4 = 0110100110010110$

- Interesting properties:
 - For each $i \in \mathbb{N}$, T_{2i} is a palindrome.
 - The sequence does not contain any cubes, i.e. subwords XXX for any $X \in \{0,1\}^*$.

- Could we separate paths labelled with a prefix *T_i* from all other paths and cycles by a distributed algorithm?
- The recursive definition of Thue–Morse can be applied backwards \Rightarrow Given sequence T_i , get back to $T_0 = 0$.
- ... $T_i T_i T_i \dots$ does not appear in the Thue–Morse sequence \Rightarrow A cycle graph looks different from a path graph.
- A promising idea:
 - Yes-instance: a path labelled with a prefix of the Thue-Morse sequence.
 - No-instance: anything else.

- Define the set of *valid* words over $\{0, 1, _\}$:
 - _0_ is valid,
 - if X is valid and Y is obtained from X by mapping $0 \mapsto 0_1_1_0$ and $1 \mapsto 1_0_0_1$, then Y is valid.
- The valid words are prefixes of length 4^k of the Thue–Morse sequence, with a separator _ added at the beginning, between each pair of consecutive symbols, and at the end.

- Local inputs from $\{A, B, C\} \times \{0, 1, _\}$.
- Local outputs from {yes, no}.
- An instance is a yes-instance if and only if
 - the graph is a path graph,
 - the first parts of the local inputs define a consistent orientation for the path: ... ABCABCABC...,
 - the second parts of the local inputs define a *valid* word over $\{0, 1, _\}$.

In each node v of G:

- Verify degree and orientation: if deg(v) ∈ {1,2} and the orientation is locally consistent, continue; otherwise, reject.
 - \Rightarrow G is essentially an oriented path, with a port-numbering.

In each node v of G:

- Verify degree and orientation: if deg(v) ∈ {1,2} and the orientation is locally consistent, continue; otherwise, reject.
 ⇒ G is essentially an oriented path with a port numbering
 - \Rightarrow G is essentially an oriented path, with a port-numbering.
- Verify the input word locally: if every other label is from {0,1} and every other label is _, continue; otherwise, reject.
 ⇒ Copy the input label as the *current label* of v.
 - \Rightarrow Maintain an invariant: always a separator _ at some finite distance.

The algorithm: a high-level idea (2/2)

In each node v of G:

Opply the recursive definition of Thue–Morse backwards:

_0+_1+_1+_0+_1+_0+_0+_1+_ _1+_0+_0+_1+_0+_1+_0+_ _0000000000+_111111111+_ _11111111+_000000000+_

If the pattern does not match or the new label for v is ambiguous, reject; otherwise, repeat.

- \Rightarrow The invariant is maintained.
- \Rightarrow The word encoded in the path goes consistently from T_{2j} to $T_{2(j-1)}$.

The algorithm: a high-level idea (2/2)

In each node v of G:

Opply the recursive definition of Thue–Morse backwards:

_0+_1+_1+_0+_1+_0+_0+_1+_ _1+_0+_0+_1+_0+_1+_0+__ _0000000000+_111111111+_ _11111111+_000000000+_

If the pattern does not match or the new label for v is ambiguous, reject; otherwise, repeat.

- \Rightarrow The invariant is maintained.
- \Rightarrow The word encoded in the path goes consistently from T_{2j} to $T_{2(j-1)}$.

If the word matches |_0+_| or |_0+_1+_1+_0+_|, accept. (Here | denotes the end of the path.) • Path graph, yes-instance:

```
\begin{array}{cccc} \_0\_1\_1\_0\_1\_0\_0\_1\_1\_0\_0\_1\_1\_0\_\\ & & (unambiguous substitutions) \\ \_0000000\_1111111\_1111111\_0000000\_\\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &
```

• Path graph, no-instance:

_0_1_1_0_1_0_0_1_1_0_1_0_0_1_ ↓ _0000000_1111111_... ..._0000000_1111111_ ↓ (ambiguous substitutions) reject • Cycle graph:

 \Downarrow (unambiguous substitutions)

____0000000_1111111_1111111_0000000 ___

 \Downarrow (no matches)

reject

- The substitutions involve constant number of blocks separated by _'s ⇒ constant space is enough.
- Need to receive information from the other end of the path
 ⇒ Ω(n) time is needed even if we have unique IDs or randomness.
- Substitution phase *i* takes $O(c^i)$ rounds (*c* constant), $O(\log n)$ phases $\Rightarrow O(n)$ time is enough.

- We proved a strong separation between constant space and constant time by introducing a graph problem that
 - can be solved in constant space in a very limited model,
 - requires linear time in strong models (e.g. LOCAL with randomness).
- However, our problem is highly artificial. It is open, whether there exist
 - natural graph problems, or
 - LCL (locally checkable labelling) problems

with the above properties.

- We proved a strong separation between constant space and constant time by introducing a graph problem that
 - can be solved in constant space in a very limited model,
 - requires linear time in strong models (e.g. LOCAL with randomness).
- However, our problem is highly artificial. It is open, whether there exist
 - natural graph problems, or
 - LCL (locally checkable labelling) problems

with the above properties.

Thanks! Questions?