
Constant Space and Non-Constant Time
in Distributed Computing

Tuomo Lempiäinen and Jukka Suomela

Aalto University, Finland

OPODIS
20th December 2017
Lisbon, Portugal

1 / 19

Time complexity versus space complexity

A well-established topic in centralised complexity theory.

For example, NP ⊆ PSPACE ⊆ EXP.

What can be said in the distributed setting?

A message-passing model:

problem instance = communication graph + local inputs,
time = number of synchronous communication rounds,
space = number of bits per node needed to represent the states.

2 / 19

Time vs. space in the distributed setting

A message-passing model:

problem instance = communication graph + local inputs,
time = number of synchronous communication rounds,
space = number of bits per node needed to represent the states.

Constant time complexity ⇒ constant space complexity.

Does the converse hold?

3 / 19

Time vs. space in the distributed setting

A message-passing model:

problem instance = communication graph + local inputs,
time = number of synchronous communication rounds,
space = number of bits per node needed to represent the states.

Constant time complexity ⇒ constant space complexity.

Does the converse hold?

More specifically: does there exist a distributed graph problem that is

solvable in constant space,
not solvable in constant time?

3 / 19

Time vs. space in the distributed setting

A message-passing model:

problem instance = communication graph + local inputs,
time = number of synchronous communication rounds,
space = number of bits per node needed to represent the states.

More specifically: does there exist a distributed graph problem that is

solvable in constant space,
not solvable in constant time?

Our result: YES, constant space and constant time can be separated!

3 / 19

What are the right assumptions? (1/2)

Easy to construct constant-space non-constant-time problems if

promise that the graph is a path, or
nodes do not need to halt.

Count the distance modulo 2 to the nearest degree-1 node:

4 / 19

What are the right assumptions? (1/2)

Easy to construct constant-space non-constant-time problems if

promise that the graph is a path, or
nodes do not need to halt.

Count the distance modulo 2 to the nearest degree-1 node:

0 0

4 / 19

What are the right assumptions? (1/2)

Easy to construct constant-space non-constant-time problems if

promise that the graph is a path, or
nodes do not need to halt.

Count the distance modulo 2 to the nearest degree-1 node:

0 1 1 0

4 / 19

What are the right assumptions? (1/2)

Easy to construct constant-space non-constant-time problems if

promise that the graph is a path, or
nodes do not need to halt.

Count the distance modulo 2 to the nearest degree-1 node:

0 1 0 0 1 0

4 / 19

What are the right assumptions? (1/2)

Easy to construct constant-space non-constant-time problems if

promise that the graph is a path, or
nodes do not need to halt.

Count the distance modulo 2 to the nearest degree-1 node:

0 1 0 1 1 0 1 0

4 / 19

What are the right assumptions? (1/2)

Easy to construct constant-space non-constant-time problems if

promise that the graph is a path, or
nodes do not need to halt.

Count the distance modulo 2 to the nearest degree-1 node:

0 1 0 1 1 0 1 0

But what if the input is a cycle?

4 / 19

What are the right assumptions? (1/2)

Easy to construct constant-space non-constant-time problems if
promise that the graph is a path, or
nodes do not need to halt.

Count the distance modulo 2 to the nearest degree-1 node:

0 1 0 1 1 0 1 0

But what if the input is a cycle?

Our result does not require any promises about the input.

4 / 19

What are the right assumptions? (2/2)

To achieve a strong separation result, we want a graph problem Π that

is solvable in constant space in a very weak model of computation,
cannot be solved in constant time even in a very strong model.

Hence, we will present an algorithm for Π in a very weak model of
computation:

no unique IDs,
no randomness,
only constant-size local inputs,
only weak communication capabilities.

5 / 19

Model of computation

1

3 1

3

2 1

A simple finite connected undirected
graph, with constant-size local inputs.

An identical deterministic state machine
on each node.

Computation proceeds in synchronous
rounds:

1 broadcast a message to neighbours,
2 receive a set of messages,
3 set a new state based on previous state

and received messages.

In all graphs, each node eventually halts
and produces an output.

6 / 19

Model of computation

1

3 1

3

2 1

←
m
1 m 1

→

m 2
→

←
m
2

{m2}

A simple finite connected undirected
graph, with constant-size local inputs.

An identical deterministic state machine
on each node.

Computation proceeds in synchronous
rounds:

1 broadcast a message to neighbours,
2 receive a set of messages,
3 set a new state based on previous state

and received messages.

In all graphs, each node eventually halts
and produces an output.

6 / 19

Model of computation

1

3 1

3

2 1

A simple finite connected undirected
graph, with constant-size local inputs.

An identical deterministic state machine
on each node.

Computation proceeds in synchronous
rounds:

1 broadcast a message to neighbours,
2 receive a set of messages,
3 set a new state based on previous state

and received messages.

In all graphs, each node eventually halts
and produces an output.

6 / 19

Complexity measures

1

3 1

3

2 1

Given an algorithm (a state machine), its

running time or time complexity is the
number of communication rounds until
all nodes have halted,

space complexity is the number of bits
needed to encode all the states that are
visited at least once,

as a function of n, over all graphs of n nodes.

7 / 19

Our main result

Problem

Construct a graph problem Π such that

1 there exists a constant-space algorithm A that halts and solves Π in all
(finite, simple, and connected) graphs, and

2 Π is not solvable by any constant-time algorithm.

Theorem

There does exist a decision graph problem Π that satisfies the above
requirements (1) and (2).

8 / 19

Our main result

Problem

Construct a graph problem Π such that

1 there exists a constant-space algorithm A that halts and solves Π in all
(finite, simple, and connected) graphs, and

2 Π is not solvable by any constant-time algorithm.

Theorem (Stronger result)

There does exist a decision graph problem Π that satisfies the above
requirements (1) and (2), and that is not solvable by any sublinear-time
algorithm even in the class of graphs of maximum degree 2.

8 / 19

An intriguing binary sequence

The Thue–Morse sequence is the infinite sequence (over {0, 1}) whose
prefixes Ti of length 2i are defined as follows:

start with T0 = 0,
obtain Ti from Ti−1 by mapping 0 7→ 01 and 1 7→ 10.

First steps:
T0 = 0
T1 = 01
T2 = 0110
T3 = 01101001
T4 = 0110100110010110

...

Interesting properties:
For each i ∈ N, T2i is a palindrome.
The sequence does not contain any cubes, i.e. subwords XXX for any
X ∈ {0, 1}∗.

9 / 19

An intriguing binary sequence

The Thue–Morse sequence is the infinite sequence (over {0, 1}) whose
prefixes Ti of length 2i are defined as follows:

start with T0 = 0,
obtain Ti from Ti−1 by mapping 0 7→ 01 and 1 7→ 10.

First steps:
T0 = 0
T1 = 01
T2 = 0110
T3 = 01101001
T4 = 0110100110010110

...

Interesting properties:
For each i ∈ N, T2i is a palindrome.
The sequence does not contain any cubes, i.e. subwords XXX for any
X ∈ {0, 1}∗.

9 / 19

Towards a decision graph problem

Could we separate paths labelled with a prefix Ti from all other paths
and cycles by a distributed algorithm?

The recursive definition of Thue–Morse can be applied backwards
⇒ Given sequence Ti , get back to T0 = 0.

. . .TiTiTi . . . does not appear in the Thue–Morse sequence
⇒ A cycle graph looks different from a path graph.

A promising idea:

Yes-instance: a path labelled with a prefix of the Thue–Morse sequence.
No-instance: anything else.

10 / 19

Formalising the idea: the graph problem Π (1/2)

Define the set of valid words over {0, 1, }:
0 is valid,

if X is valid and Y is obtained from X by mapping 0 7→ 0 1 1 0 and
1 7→ 1 0 0 1, then Y is valid.

The valid words are prefixes of length 4k of the Thue–Morse sequence,
with a separator added at the beginning, between each pair of
consecutive symbols, and at the end.

11 / 19

The decision graph problem Π (2/2)

Local inputs from {A,B,C} × {0, 1, }.
Local outputs from {yes, no}.

An instance is a yes-instance if and only if

the graph is a path graph,
the first parts of the local inputs define a consistent orientation for the
path: . . . ABCABCABC. . . ,
the second parts of the local inputs define a valid word over {0, 1, }.

12 / 19

The algorithm: a high-level idea (1/2)

In each node v of G :

1 Verify degree and orientation: if deg(v) ∈ {1, 2} and the orientation is
locally consistent, continue; otherwise, reject.
⇒ G is essentially an oriented path, with a port-numbering.

2 Verify the input word locally: if every other label is from {0, 1} and
every other label is , continue; otherwise, reject.
⇒ Copy the input label as the current label of v .
⇒ Maintain an invariant: always a separator at some finite distance.

13 / 19

The algorithm: a high-level idea (1/2)

In each node v of G :

1 Verify degree and orientation: if deg(v) ∈ {1, 2} and the orientation is
locally consistent, continue; otherwise, reject.
⇒ G is essentially an oriented path, with a port-numbering.

2 Verify the input word locally: if every other label is from {0, 1} and
every other label is , continue; otherwise, reject.
⇒ Copy the input label as the current label of v .
⇒ Maintain an invariant: always a separator at some finite distance.

13 / 19

The algorithm: a high-level idea (2/2)

In each node v of G :

3 Apply the recursive definition of Thue–Morse backwards:

0+ 1+ 1+ 0+ 1+ 0+ 0+ 1+ 1+ 0+ 0+ 1+ 0+ 1+ 1+ 0+

0000000000+ 1111111111+ 1111111111+ 0000000000+

If the pattern does not match or the new label for v is ambiguous,
reject; otherwise, repeat.
⇒ The invariant is maintained.
⇒ The word encoded in the path goes consistently from T2j to T2(j−1).

4 If the word matches | 0+ | or | 0+ 1+ 1+ 0+ |, accept.

(Here | denotes the end of the path.)

14 / 19

The algorithm: a high-level idea (2/2)

In each node v of G :

3 Apply the recursive definition of Thue–Morse backwards:

0+ 1+ 1+ 0+ 1+ 0+ 0+ 1+ 1+ 0+ 0+ 1+ 0+ 1+ 1+ 0+

0000000000+ 1111111111+ 1111111111+ 0000000000+

If the pattern does not match or the new label for v is ambiguous,
reject; otherwise, repeat.
⇒ The invariant is maintained.
⇒ The word encoded in the path goes consistently from T2j to T2(j−1).

4 If the word matches | 0+ | or | 0+ 1+ 1+ 0+ |, accept.

(Here | denotes the end of the path.)

14 / 19

Examples (1/3)

Path graph, yes-instance:

0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0

⇓ (unambiguous substitutions)

0000000 1111111 1111111 0000000

⇓
accept

15 / 19

Examples (2/3)

Path graph, no-instance:

0 1 1 0 1 0 0 1 1 0 1 0 0 1

⇓
0000000 1111111 . . .

. . . 0000000 1111111

⇓ (ambiguous substitutions)

reject

16 / 19

Examples (3/3)

Cycle graph:

0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0

⇓ (unambiguous substitutions)

0000000 1111111 1111111 0000000

⇓ (no matches)

reject

17 / 19

Complexity

The substitutions involve constant number of blocks separated by ′s
⇒ constant space is enough.

Need to receive information from the other end of the path
⇒ Ω(n) time is needed – even if we have unique IDs or randomness.

Substitution phase i takes O(c i) rounds (c constant), O(log n) phases
⇒ O(n) time is enough.

18 / 19

Conclusion

We proved a strong separation between constant space and constant
time by introducing a graph problem that

can be solved in constant space in a very limited model,
requires linear time in strong models (e.g. LOCAL with randomness).

However, our problem is highly artificial. It is open, whether there exist

natural graph problems, or
LCL (locally checkable labelling) problems

with the above properties.

Thanks! Questions?

19 / 19

Conclusion

We proved a strong separation between constant space and constant
time by introducing a graph problem that

can be solved in constant space in a very limited model,
requires linear time in strong models (e.g. LOCAL with randomness).

However, our problem is highly artificial. It is open, whether there exist

natural graph problems, or
LCL (locally checkable labelling) problems

with the above properties.

Thanks! Questions?

19 / 19

