
Ability to Count Messages Is Worth
Θ(∆) Rounds in Distributed Computing

Tuomo Lempiäinen
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Outline

1 Introduction to distributed computing

2 Different models of computation

3 New result: a tight lower bound for simulating one
model in another (by using bisimulation)
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Distributed system

A simple finite undirected
graph, whose each node is a
deterministic state machine
that

runs the same
algorithm,

can communicate with
its neighbours,

produces a local output.

Anonymous nodes ⇒ a weak
model of computation.
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Communication in synchronous rounds

v

←
a

b
→

In every round, each node v
1 sends messages to its

neighbours,
2 receives messages from

its neighbours,
3 updates its state.

Eventually, each node halts
and announces its own local
output.

4 / 20



Communication in synchronous rounds

v

c →
←
d

In every round, each node v
1 sends messages to its

neighbours,
2 receives messages from

its neighbours,
3 updates its state.

Eventually, each node halts
and announces its own local
output.

4 / 20



Communication in synchronous rounds

v

In every round, each node v
1 sends messages to its

neighbours,
2 receives messages from

its neighbours,
3 updates its state.

Eventually, each node halts
and announces its own local
output.

4 / 20



Communication in synchronous rounds

v

In every round, each node v
1 sends messages to its

neighbours,
2 receives messages from

its neighbours,
3 updates its state.

Eventually, each node halts
and announces its own local
output.

4 / 20



Focus on communication, not computation

∆ = 3
n = 6

The running time of an
algorithm is the number of
communications rounds.

The running time may
depend on two parameters:

the maximum degree of
the graph, ∆,

the number of nodes, n.
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Variants of the model of computation

Options for sending
messages:

a port number for each
neighbour,

broadcast the same
message to all
neighbours.

Options for receiving
messages:

a port number for each
neighbour,

receive a multiset of
messages,

receive a set of
messages.
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A hierarchy of models

VVc

VV

MV

SV

VB

MB

SB

VVc

VV

6=

MV

=

SV

=

VB

MB

=

SB

6=

6=

Hella et al. (PODC 2012):

SB ( MB = VB ( SV = MV = VV ( VVc.
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Graph problems

We study graph problems where

problem instance is the communication graph
G = (V ,E ),

the local outputs together define a solution
S : V → Y , where Y is a finite set of local outputs.

Algorithm A solves problem Π in time T if for all input
graphs G of maximum degree at most ∆:

1 A stops after at most T (∆, n) rounds in each node
of G .

2 The output S of A in G is a valid solution for Π.
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Example: graph problems

Often the solution
S : V → Y is an encoding of
a subset of vertices or edges
of the graph.

Example problems:

minimum vertex cover,

maximal matching.
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Example: graph problems

Y = {1, 2, 3}

Often the solution
S : V → Y is an encoding of
a subset of vertices or edges
of the graph.

Example problems:

minimum vertex cover,

maximal matching.
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The models MV and SV

v
1

←
a 3

b

→

2 c
→

Node v sends a vector (a, c , b).

Node v receives

a multiset {a, a, b} in
model MV,

a set {a, b} in model SV.

Formally, MV and SV denote
the classes of graph problems
solvable in the corresponding
models.
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The relationship of MV and SV

Trivially SV ⊆ MV.

Hella, Järvisalo, Kuusisto, Laurinharju, L., Luosto,
Suomela, Virtema (PODC 2012):

Theorem
Assume that there is an MV-algorithm A that solves a
problem Π in time T . Then there is an SV-algorithm B
that solves Π in time T + 2∆− 2.

It follows that SV = MV.
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Idea behind the previous theorem

First, solve the following simulation problem by an
SV-algorithm:

u

v
p1

w
p2

If p1 = p2, then
label(v) 6= label(w).

Now the pair

(label, port number)

is distinct for each neighbour.

Then, simulate the MV-algorithm by attaching the above
pair to each message.
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Overhead required to simulate MV in SV

PODC 2012: The previous problem can be solved in
2∆− 2 communication rounds.

Is this result tight?

This work: YES

Theorem

For each ∆ ≥ 2 there is a port-numbered graph G∆ with
nodes u, v ,w such that when executing any
SV-algorithm A in G∆, u receives identical messages from
its neighbours v and w in rounds 1, 2, . . . , 2∆− 2.
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Overhead required to simulate MV in SV

We can also separate the models by a graph problem:

Theorem

There is a graph problem Π that can be solved in one
round by an MV-algorithm but that requires at least ∆− 1
rounds for all ∆ ≥ 2, when solved by an SV-algorithm.
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Example: separating SV and MV

u

1

1

1
3

1

2

3
2

1
2

1
21

3
1

3

v

1

1

1
3

1

2

2
2

1
2

1
21

3

Output 1 if there is an even number of neighbours of even
degree, 0 otherwise.
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Generalisation: graph G∆ (here ∆ = 4)

16 / 20

1

1

2

2

1

1

1

3

3

4

3

3

1

1

1

2

2

4

4

4

1

1

1

2

2

3

1

2

1

2

1

2

1

3

3

4

3

3

1

1

1

2

2

4

4

4

1

1

1

2

2

3

2

3

1

1

1

2

2

3

3

4

2

3

1

1

1

3

2

4

4

4

1

1

1

2

2

3

3

4

1

1

1

2

2

3

3

4

2

2

1

1

1

3

3

4

3

4

1

1

1

2

2

4

...



Proof idea

1 Investigate walks that start from the blue nodes and
follow an identical sequence of port numbers.

1 In which cases we cannot extend the walks in a consistent
manner?

2 What is the length of such maximal walks?

2 Prove a lower bound for the length of the walks.
3 Show that the lower bound on walks implies

bisimilarity of the blue nodes up to a certain distance.
4 Bisimilarity entails a lower bound for the running

time of any distributed algorithm that is able to
distinguish the nodes.
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A pair of separating walks in G4

18 / 20
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Connections to modal logic

Hella et al. (PODC 2012):

Logical characterisations for constant-time variants
of the problem classes.

In a certain class of structures, SV corresponds to
multimodal logic

. . . and MV corresponds to graded multimodal logic.

Our result: When given a formula φ of graded
multimodal logic, we can find an equivalent
formula ψ of multimodal logic, but in general, the
modal depth md(ψ) of ψ has to be at least
md(φ) + ∆− 1.
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Conclusion

MV: Send a vector, receive a multiset.
SV: Send a vector, receive a set.

Previously:

It is possible to simulate MV in SV by using 2∆− 2
extra rounds.

This work:

2∆− 2 rounds are necessary.
Linear-in-∆ separation by a graph problem.

Thanks!
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