A Lower Bound for the Distributed Lovasz Local Lemma J

Tuomo Lempidinen

Department of Computer Science, Aalto University

Helsinki Algorithms Seminar, University of Helsinki
3rd December 2015

Authors

This is joint work with
@ Sebastian Brandt,

Orr Fischer,

Juho Hirvonen,

Barbara Keller,
Joel Rybicki,
Jukka Suomela,

Jara Uitto.

e 6 6 o o

IN)

29

Outline

@ The Lovész local lemma

© Our model of distributed computing

© A lower bound for the distributed LLL

/29

The probabilistic method

@ Primarily used in combinatorics to give existence proofs.

@ Randomly choose objects from a certain class, and show that the

probability that the object is of the desired kind is larger than zero.

o |t follows that at least one such object has to exist.

29

The probabilistic method

@ Primarily used in combinatorics to give existence proofs.

@ Randomly choose objects from a certain class, and show that the
probability that the object is of the desired kind is larger than zero.

o |t follows that at least one such object has to exist.

o Let £ ={Ey,...,E,} be a set of bad events that make the object
undesirable.

o If the events are mutually independent and Pr(E;i) < 1 for each i, we
have trivially Pr((_; E;) > 0.

@ What if there is some dependence between the events?

The Lovasz local lemma (LLL)

Theorem (Erdés and Lovasz, 1975)

Let £ ={E,...,E,} be a finite set of events such that each E; depends on

at most d other events. If Pr(E;) < p and 4pd < 1, then there is a positive
probability that none of the events occur.

The Lovasz local lemma (LLL)

Theorem (Erdés and Lovasz, 1975)

Let £ = {E,...,En} be a finite set of events such that each E; depends on
at most d other events. If Pr(E;) < p and 4pd < 1, then there is a positive
probability that none of the events occur.

v

Theorem (Lovész, 1977)

Let £ ={E,...,E,} be a finite set of events such that each E; depends on
at most d other events. If Pr(E;) < p and ep(d + 1) < 1, then there is a
positive probability that none of the events occur.

.

e =2.718... is the base of the natural logarithm.

LLL: an example

Proposition

Any instance ¢ of k-SAT where no variable appears in more than zkk_ :
clauses is satisfiable.

LLL: an example

Proposition

2k72

Any instance ¢ of k-SAT where no variable appears in more than =

clauses is satisfiable.

© Pick a truth assignment uniformly at random.

@ Let E; denote the event “clause / is not satisfied”.

Q@ Pr(E)=2"k=p.

© E; depends on at most d = kL,:Z = 2k=2 other events.
© We have 4pd =4 .27k . 2k=2 =1,

@ Now LLL implies that Pr(() E;) > 0.

6/29

The algorithmic LLL

@ LLL itself does not give a method for finding the object whose
existence it proves.

o Beck showed in 1991 that there exist a deterministic polynomial-time
algorithm for a weaker variant of LLL.

@ This inspired a long line of reseach about algorithms for various
versions of LLL.

@ The breakthrough result of Moser and Tardos (2010) shows that there
is a simple randomised resampling algorithm for a very general form of
LLL.

o But we are interested in the distributed algorithmic LLL.

29

~

Distributed computing: the LOCAL model

A simple connected undirected graph

G =

(V, E), where each node v € V
is given its own input,
runs the same algorithm,

communicates with its
neighbours,

produces its own output.

Communication in synchronous rounds

Initially, each node v knows the total number of nodes n, the maximum
degree of the graph A, and a task-specific local input f(v).

In every round, each node v € V
© sends messages to its neighbours,

@ receives messages from its
neighbours,

© updates its state.

Communication in synchronous rounds

Initially, each node v knows the total number of nodes n, the maximum
degree of the graph A, and a task-specific local input f(v).

In every round, each node v € V
© sends messages to its neighbours,

@ receives messages from its
neighbours,

© updates its state.

Communication in synchronous rounds

Initially, each node v knows the total number of nodes n, the maximum
degree of the graph A, and a task-specific local input f(v).

In every round, each node v € V
© sends messages to its neighbours,

@ receives messages from its
neighbours,

© updates its state.

Communication in synchronous rounds

Initially, each node v knows the total number of nodes n, the maximum
degree of the graph A, and a task-specific local input f(v).

In every round, each node v € V
© sends messages to its neighbours,

@ receives messages from its
neighbours,

© updates its state.

Communication in synchronous rounds

Initially, each node v knows the total number of nodes n, the maximum
degree of the graph A, and a task-specific local input f(v).

In every round, each node v € V
© sends messages to its neighbours,

@ receives messages from its
neighbours,

© updates its state.

After the final round, each node
announces its output.

The running time of an algorithm is the number of communications rounds
until all nodes have stopped, as a function of n.

Input and output

@ The same graph G = (V/, E) serves both as the communication
network and as the problem instance.

@ A graph problem is defined by a function I1 that maps each graph G
and each labelling f: V — X to a set I(G, f) of solutions S: V — Y.

@ The output of algorithm A in (G, f) is the function g: V — Y such
that g(v) is the local output of v for each node v.

@ Algorithm A solves problem 1 if for each graph G and labelling f the
output g of Aiin (G, f) isin (G, f).

10/29

Randomised algorithms

@ We assume that each node can toss a countably infinite number of
random coins.

e Equivalently, each node v is given a real number x(v) taken uniformly
at random from [0, 1].

e With probability 1, the values x(v) are globally unique and can thus be
used as identifiers.

11/29

Randomised algorithms

@ We assume that each node can toss a countably infinite number of
random coins.

e Equivalently, each node v is given a real number x(v) taken uniformly
at random from [0, 1].

e With probability 1, the values x(v) are globally unique and can thus be
used as identifiers.

@ Monte Carlo algorithms:

o Running time is deterministic.
o Output is a valid solution with high probability (with probability at least
1 —1/n° for an arbitrarily large constant c).

11/29

The distributed Lovasz local lemma

o Let X = {Xi,..., X} be a set of mutually independent random
variables and let £ = {E;, ..., E,} be a set of events.

@ Denote by vbl(E;) C X the subset of variables that E; depends on.

e Define a dependency graph Gg = (€, D), where
D = {{E;, Ej} : vbl(E;) Nvbl(E;) # 0}.

Let the communication network be isomorphic to Gg = (€, D); each node v
corresponds to an event E, € £ and knows the set vbl(E,). The task is to
have each node v output an assignment a, of the variables vbl(E,) such
that
Q for any {E,,E,} € D and X € vbl(E,) Nvbl(E,) it holds that
au(X) = av(X),
@ the event E, does not occur under assignment a,.

12/29

Existing algorithms and lower bounds

@ The algorithm of Moser and Tardos (2010) can be adapted to the
distributed setting; the running time is O(Iog2 n) rounds.

@ Chung et al. (2014) gave a distributed algorithm running in O(log n)
rounds in bounded-degree graphs.

@ LLL can be used to properly colour a cycle graph using a constant
number of colours. This is known to require Q(log™ n) rounds.

13 /29

Our lower bound

Let f: N — R be such that f(4) < 16. Let A be a Monte Carlo distributed
algorithm for LLL that finds an assignment avoiding all the bad events
under the LLL criteria pf(d) < 1 with high probability. Then the running
time of A is Q(log log n) rounds.

Note that we can plug in, for example, either of the LLL criteria
ep(d+1) <1lorépd<1.

14 /29

Outline of the proof

@ Two new graph problems: sinkless orientation and sinkless colouring.

@ LLL can be used to solve the sinkless orientation in 3-regular graphs.
o A mutual speedup lemma:
e If we can find a sinkless colouring in t rounds, we can find a sinkless
orientation in t rounds.
o If we can find a sinkless orientation in t rounds, we can find a sinkless
colouring in t — 1 rounds.
@ By iterating the lemma, we obtain an algorithm that finds a sinkless
orientation in 0 rounds, which leads to a contradiction.

15/29

Orientations

@ An orientation o of a graph G = (V, E) assigns a direction
o({u,v}) e {u—v,u<+ v}

for each edge {u,v} € E.
@ For all v € V define

in-deg(v,0) = |{u: (u,v) € o(E)}]
out-deg(v,0) = |{u: (v,u) € o(E)}|
deg(v) = in-deg(v, o) + out-deg(v, o).
@ A node v with in-deg(v, o) = deg(v) is called a sink. We call an

orientation o sinkless if no node is a sink, that is, every node v has
out-deg(v, o) > 0.

16

29

Sinkless orientation

@ A node v with in-deg(v, o) = deg(v) is called a sink. We call an
orientation o sinkless if no node is a sink, that is, every node v has
out-deg(v, o) > 0.

(a) |> — < (b) T> D :T () ‘\

— o/

Figure: (a) A 3-regular edge 3-coloured graph. (b) A sinkless orientation. (c) A
sinkless colouring.

17/29

Colourings

o We write [k] = {0,1,...,k—1}.
e ¢: E — [x] is a proper edge x-colouring if any two adjacent edges
have a different colour.

@ Given a properly edge x-coloured graph G = (V, E,), we call
¢: V — [x] a sinkless colouring of G if for all edges e = {u,v} € E it
holds that

p(u) = b(e) = o(v) # (e),

that is, if at least one endpoint of each edge has a different colour than
the edge.

18 /29

Sinkless colouring

o Given a properly edge x-coloured graph G = (V, E,), we call
©: V — [x] a sinkless colouring of G if for all edges e = {u,v} € E it
holds that
p(u) = v(e) = o(v) # P(e),
that is, if at least one endpoint of each edge has a different colour than
the edge.

S/ oA]
(a)l/—\ (b) 4-\

/4

ﬁ ()

Figure: (a) A 3-regular edge 3-coloured graph. (b) A sinkless orientation. (c) A
sinkless colouring.

19/29

Graph problem definitions

Problem (Sinkless colouring)

Given an edge d-coloured d-regular graph G = (V, E,), find a sinkless
colouring . That is, compute a colouring ¢ such that for no edge

e ={u,v} € E we have p(u) = p(v) = ¢(e).

Problem (Sinkless orientation)

Given an edge d-coloured d-regular graph G = (V, E,), find a sinkless
orientation. That is, compute an orientation o such that out-deg(v,o) > 0
forallv e V.

20/29

Relationship between the graph problems

S_ 7 . ix_»n K/
(a)l/—\ ()1,4-\ (C)./—Q\.

Figure: (a) A 3-regular edge 3-coloured graph. (b) A sinkless orientation. (c) A
sinkless colouring.

@ From a sinkless orientation we get a sinkless colouring in 0 rounds.

@ From a sinkless colouring we get a sinkless orientation in 1 rounds.

21/29

From LLL to sinkless orientation

Let f: N — R be such that f(4) < 16. Let A be a Monte Carlo distributed
algorithm for LLL such that A finds an assignment avoiding all the bad
events under the LLL criteria pf(d) <1 in time T for some T: N — N.
Then there is a Monte Carlo distributed algorithm B that finds a sinkless
orientation in 3-regular graphs of girth at least 5 in time O(T).

From LLL to sinkless orientation

Let f: N — R be such that f(4) < 16. Let A be a Monte Carlo distributed
algorithm for LLL such that A finds an assignment avoiding all the bad
events under the LLL criteria pf(d) <1 in time T for some T: N — N.
Then there is a Monte Carlo distributed algorithm B that finds a sinkless
orientation in 3-regular graphs of girth at least 5 in time O(T).

e We start with 4-regular graphs G = (V, E).
@ Set vbI(E,) ={Xe : v € e} foreachv eV
@ For each e = {u, v} € E, the variable X, ranges over {u — v,u + v}

@ The bad event E, occurs exactly when for all neighbours u of v the
variable Xy, ;) takes the value u — v

From LLL to sinkless orientation

o If the variables X, are sampled uniformly at random, we have
Pr(E,) = 1/2* = 1/16 for each v € V.

@ Let p=1/16 and d = 4. Now Pr(E,) < p and E, depends on d other
events for each v € V, and the condition pf(d) <1 holds, given
f(4) < 16.

@ Run the algorithm A and define an orientation o of G by setting
o(e) = a,(Xe), where v € e, for each e € E.

@ Now o is a sinkless orientation of G.

23 /29

From 3-regular to 4-regular graphs

o LLL is not directly applicable: the probability of bad events would be
p=1/23=1/8 and thus ep(d + 1) > 1.

@ Contract edges of one colour class to obtain a 4-regular graph.

@ Simulate the algorithm for the 4-regular case in the 3-regular graph.

24 /29

From 3-regular to 4-regular graphs

o LLL is not directly applicable: the probability of bad events would be
p=1/23=1/8 and thus ep(d + 1) > 1.

@ Contract edges of one colour class to obtain a 4-regular graph.

@ Simulate the algorithm for the 4-regular case in the 3-regular graph.

“T1 11 "\ \

(d)

DN

- 0=p 6 <=

24 /29

The mutual speedup lemma

Suppose B is a sinkless colouring algorithm that runs in t rounds such that
for any edge e = {u, v} the probability of outputting a forbidden
configuration B(u) = 1(e) = B(v) is at most p. Then there exists a
sinkless orientation algorithm B’ that runs in t rounds such that for any
node u the probability of being a sink is at most 6p*/3.

25 /29

The mutual speedup lemma

Suppose B is a sinkless colouring algorithm that runs in t rounds such that
for any edge e = {u, v} the probability of outputting a forbidden
configuration B(u) = 1(e) = B(v) is at most p. Then there exists a
sinkless orientation algorithm B’ that runs in t rounds such that for any

node u the probability of being a sink is at most 6p*/3.

Suppose B’ is a sinkless orientation algorithm that runs in time t such that
the probability that any node u is a sink is at most ¢. Then there exists a
sinkless colouring algorithm B” that runs in time t — 1 such that the
probability for any edge e = {u, v} having a forbidden configuration

B"(u) = v(e) = B"(v) is less than 4¢%/*.

25 /29

From colouring to orientation: the proof idea

@ Given a randomised sinkless colouring algorithm B running in t rounds,
construct a randomised sinkless orientation algorithm B’ that also runs
in t rounds.

@ We write B(u) for the colour that u outputs according to B and B’(e)
for the orientation B’ outputs for edge e.

@ We denote the radius-t neighbourhood of a node u by
Nt (u) = {v e V : dist(u,v) < t},

where dist(u, v) is the length of the shortest path between v and v.

@ The radius-t neighbourhood of an edge {u, v} is

N ({u,v}) = N*(u) N NE(v).

26 /29

From colouring to orientation: the proof idea

Consider any node u € V. Algorithm B’ consists of three steps:
@ Node u gathers its radius-t neighbourhood N*(u) in t rounds.
@ Node u computes the set C(u) of candidate colours:

Clu) = {w(e) . Pr[B(u) = ¥(e) | Nt(e)] > p¥/3 and e = {u, v}},

In addition, for each e = {u, v} node u calculates the probability of v

outputting the colour 1(e) when executing B. Thus u can determine
whether ¥(e) € C(v).

27/29

From colouring to orientation: the proof idea

Consider any node u € V. Algorithm B’ consists of three steps:
@ Node u gathers its radius-t neighbourhood N*(u) in t rounds.
@ Node u computes the set C(u) of candidate colours:

cw):{ww);quw)zww)UW@nsz3M@e:{vaH

In addition, for each e = {u, v} node u calculates the probability of v
outputting the colour 1(e) when executing B. Thus u can determine

whether ¥(e) € C(v).

Q Ify(e) € C(u)n C(v) or y(e) ¢ C(u)U C(v), choose the orientation
B'(e) of edge e arbitrarily. Otherwise, edge e is oriented according to
the following rule:

g@:{w+vﬁwaeq@mmm@¢qm
u<+ v ify(e) ¢ C(u) and ¥(e) € C(v).

27/29

From colouring to orientation: the proof idea

N'(e)

= < = <

[4

(a) — (b) =
~ / u v\ - ~ / u v\ -
N , Cw) €
N | L4

Here the running time t = 2.

In algorithm B, the colour of node u is determined by the random bits
in Nf(u).

Black is a candidate colour of u if, based on the information in Nt(e),
the probability of u outputting black in algorithm B is at least p'/3.

If black is one of the candidate colours of u, and it is not one of the
candidate colours of v, then algorithm B’ will orient the edge u — v.

28 /29

Conclusion

@ There is a randomised distributed algorithm for LLL that runs in
O(log n) rounds in bounded-degree graphs.

@ The best previously known lower bound was Q(log* n) rounds.
@ We show that any randomised Monte Carlo algorithm for LLL that

finds a satisfying assignment with high probability requires Q(log log n)
rounds.

29/29

	The Lovász local lemma
	Our model of distributed computing
	A lower bound for the distributed LLL

