
A Lower Bound for the Distributed Lovász Local Lemma

Tuomo Lempiäinen

Department of Computer Science, Aalto University, Finland

Graduiertenseminar “Theorie der künstlichen Intelligenz”, Universität Bremen
25th November 2015

1 / 26

Authors

This is joint work with

Sebastian Brandt,

Orr Fischer,

Juho Hirvonen,

Barbara Keller,

Joel Rybicki,

Jukka Suomela,

Jara Uitto.

2 / 26

Outline

1 The Lovász local lemma

2 Our model of distributed computing

3 A lower bound for the distributed LLL

3 / 26

The probabilistic method

Primarily used in combinatorics to give existence proofs.

Randomly choose objects from a certain class, and show that the
probability that the object is of the desired kind is larger than zero.

It follows that at least one such object has to exist.

Let E = {E1, . . . ,En} be a set of bad events that make the object
undesirable.

If the events are mutually independent and Pr(Ei) < 1 for each i , we
have trivially Pr(

⋂n
i=1 Ei) > 0.

What if there is some dependence between the events?

4 / 26

The probabilistic method

Primarily used in combinatorics to give existence proofs.

Randomly choose objects from a certain class, and show that the
probability that the object is of the desired kind is larger than zero.

It follows that at least one such object has to exist.

Let E = {E1, . . . ,En} be a set of bad events that make the object
undesirable.

If the events are mutually independent and Pr(Ei) < 1 for each i , we
have trivially Pr(

⋂n
i=1 Ei) > 0.

What if there is some dependence between the events?

4 / 26

The Lovász local lemma (LLL)

Theorem (Erdős and Lovász, 1975)

Let E = {E1, . . . ,En} be a finite set of events such that each Ei depends on
at most d other events. If Pr(Ei) ≤ p and 4pd ≤ 1, then there is a positive
probability that none of the events occur.

Theorem (Lovász, 1977)

Let E = {E1, . . . ,En} be a finite set of events such that each Ei depends on
at most d other events. If Pr(Ei) ≤ p and ep(d + 1) ≤ 1, then there is a
positive probability that none of the events occur.

e = 2.718 . . . is the base of the natural logarithm.

5 / 26

The Lovász local lemma (LLL)

Theorem (Erdős and Lovász, 1975)

Let E = {E1, . . . ,En} be a finite set of events such that each Ei depends on
at most d other events. If Pr(Ei) ≤ p and 4pd ≤ 1, then there is a positive
probability that none of the events occur.

Theorem (Lovász, 1977)

Let E = {E1, . . . ,En} be a finite set of events such that each Ei depends on
at most d other events. If Pr(Ei) ≤ p and ep(d + 1) ≤ 1, then there is a
positive probability that none of the events occur.

e = 2.718 . . . is the base of the natural logarithm.

5 / 26

LLL: example

Proposition

Any instance φ of k-SAT where no variable appears in more than 2k−2

k
clauses is satisfiable.

Proof.
1 Pick a truth assignment uniformly at random.

2 Let Ei denote the event “clause i is not satisfied”.

3 Pr(Ei) = 2−k =: p.

4 Ei depends on at most d := k 2k−2

k = 2k−2 other events.

5 We have 4pd = 4 · 2−k · 2k−2 = 1.

6 Now LLL implies that Pr(
⋂

Ei) > 0.

6 / 26

LLL: example

Proposition

Any instance φ of k-SAT where no variable appears in more than 2k−2

k
clauses is satisfiable.

Proof.
1 Pick a truth assignment uniformly at random.

2 Let Ei denote the event “clause i is not satisfied”.

3 Pr(Ei) = 2−k =: p.

4 Ei depends on at most d := k 2k−2

k = 2k−2 other events.

5 We have 4pd = 4 · 2−k · 2k−2 = 1.

6 Now LLL implies that Pr(
⋂

Ei) > 0.

6 / 26

The algorithmic LLL

LLL itself does not give a method for finding the object whose
existence it proves.

Beck showed in 1991 that there exist a deterministic polynomial-time
algorithm for a weaker variant of LLL.

This inspired a long line of reseach about algorithms for various
versions of LLL.

The breakthrough result of Moser and Tardos (2010) shows that there
is a simple randomised resampling algorithm for a very general form of
LLL.

But we are interested in the distributed algorithmic LLL.

7 / 26

Distributed computing: the LOCAL model

A simple connected undirected graph
G = (V ,E), where each node v ∈ V

is given its own input,

runs the same algorithm,

communicates with its
neighbours,

produces its own output.

8 / 26

Communication in synchronous rounds

Initially, each node v knows the total number of nodes n, the maximum
degree of the graph ∆, and a task-specific local input f (v).

v

In every round, each node v ∈ V

1 sends messages to its neighbours,

2 receives messages from its
neighbours,

3 updates its state.

After the final round, each node
announces its output.

The running time of an algorithm is the number of communications rounds
until all nodes have stopped, as a function of n.

9 / 26

Communication in synchronous rounds

Initially, each node v knows the total number of nodes n, the maximum
degree of the graph ∆, and a task-specific local input f (v).

v

←
a

b
→

In every round, each node v ∈ V

1 sends messages to its neighbours,

2 receives messages from its
neighbours,

3 updates its state.

After the final round, each node
announces its output.

The running time of an algorithm is the number of communications rounds
until all nodes have stopped, as a function of n.

9 / 26

Communication in synchronous rounds

Initially, each node v knows the total number of nodes n, the maximum
degree of the graph ∆, and a task-specific local input f (v).

v

c →
←

d

In every round, each node v ∈ V

1 sends messages to its neighbours,

2 receives messages from its
neighbours,

3 updates its state.

After the final round, each node
announces its output.

The running time of an algorithm is the number of communications rounds
until all nodes have stopped, as a function of n.

9 / 26

Communication in synchronous rounds

Initially, each node v knows the total number of nodes n, the maximum
degree of the graph ∆, and a task-specific local input f (v).

v

In every round, each node v ∈ V

1 sends messages to its neighbours,

2 receives messages from its
neighbours,

3 updates its state.

After the final round, each node
announces its output.

The running time of an algorithm is the number of communications rounds
until all nodes have stopped, as a function of n.

9 / 26

Communication in synchronous rounds

Initially, each node v knows the total number of nodes n, the maximum
degree of the graph ∆, and a task-specific local input f (v).

v

In every round, each node v ∈ V

1 sends messages to its neighbours,

2 receives messages from its
neighbours,

3 updates its state.

After the final round, each node
announces its output.

The running time of an algorithm is the number of communications rounds
until all nodes have stopped, as a function of n.

9 / 26

Input and output

The same graph G = (V ,E) serves both as the communication
network and as the problem instance.

A graph problem is defined by a function Π that maps each graph G
and each labelling f : V → X to a set Π(G , f) of solutions S : V → Y .

The output of algorithm A in (G , f) is the function g : V → Y such
that g(v) is the local output of v for each node v .

Algorithm A solves problem Π if for each graph G and labelling f the
output g of A in (G , f) is in Π(G , f).

10 / 26

Randomised algorithms

We assume that each node can toss a countably infinite number of
random coins.

Equivalently, each node v is given a real number x(v) taken uniformly
at random from [0, 1].

With probability 1, the values x(v) are globally unique and can thus be
used as identifiers.

Monte Carlo algorithms:

Running time is deterministic.
Output is a valid solution with high probability (with probability at least
1− 1/nc for an arbitrarily large constant c).

11 / 26

Randomised algorithms

We assume that each node can toss a countably infinite number of
random coins.

Equivalently, each node v is given a real number x(v) taken uniformly
at random from [0, 1].

With probability 1, the values x(v) are globally unique and can thus be
used as identifiers.

Monte Carlo algorithms:

Running time is deterministic.
Output is a valid solution with high probability (with probability at least
1− 1/nc for an arbitrarily large constant c).

11 / 26

The distributed Lovász local lemma

Let X = {X1, . . . ,Xm} be a set of mutually independent random
variables and let E = {E1, . . . ,En} be a set of events.

Denote by vbl(Ei) ⊆ X the subset of variables that Ei depends on.

Define a dependency graph GE = (E ,D), where
D = {{Ei ,Ej} : vbl(Ei) ∩ vbl(Ej) 6= ∅}.

Problem

Let the communication network be isomorphic to GE = (E ,D); each node v
corresponds to an event Ev ∈ E and knows the set vbl(Ev). The task is to
have each node output an assignment av of the variables vbl(Ev) such that

1 for any {Eu,Ev} ∈ D and X ∈ vbl(Eu) ∩ vbl(Ev) it holds that
au(X) = av (X),

2 the event Ev does not occur under assignment av .

12 / 26

Existing algorithms and lower bounds

The algorithm of Moser and Tardos (2010) can be adapted to the
distributed setting; the running time is O(log2 n) rounds.

Chung et al. (2014) gave a distributed algorithm running in O(log n)
rounds in bounded-degree graphs.

LLL can be used to properly colour a cycle graph using a constant
number of colours. This is known to require Ω(log∗ n) rounds.

13 / 26

Our lower bound

Theorem

Let f : N→ R be such that f (4) ≤ 16. Let A be a Monte Carlo distributed
algorithm for LLL that finds an assignment avoiding all the bad events
under the LLL criteria pf (d) ≤ 1 with high probability. Then the running
time of A is Ω(log log n) rounds.

Note that we can plug in, for example, either of the LLL criteria
ep(d + 1) ≤ 1 or 4pd ≤ 1.

14 / 26

Outline of the proof

Two new graph problems: sinkless orientation and sinkless colouring.

LLL can be used to solve the sinkless orientation in 3-regular graphs.

A mutual speedup lemma:

If we can find a sinkless colouring in t rounds, we can find a sinkless
orientation in t rounds.
If we can find a sinkless orientation in t rounds, we can find a sinkless
colouring in t − 1 rounds.

By iterating the lemma, we obtain an algorithm that finds a sinkless
orientation in 0 rounds, which leads to a contradiction.

15 / 26

Orientations

An orientation σ of a graph G = (V ,E) assigns a direction
σ({u, v}) ∈ {u → v , u ← v} for each edge {u, v} ∈ E .

For all v ∈ V define in-deg(v , σ) = |{u : (u, v) ∈ σ(E)}|,
out-deg(v , σ) = |{u : (v , u) ∈ σ(E)}| and
deg(v) = in-deg(v , σ) + out-deg(v , σ).

A node v with in-deg(v , σ) = deg(v) is called a sink. We call an
orientation σ sinkless if no node is a sink, that is, every node v has
out-deg(v , σ) > 0.

16 / 26

Colourings

We write [k] = {0, 1, . . . , k − 1}.
ψ : E → [χ] is a proper edge χ-colouring if any two adjacent edges
have a different colour.

Given a properly edge χ-coloured graph G = (V ,E , ψ), we call
ϕ : V → [χ] a sinkless colouring of G if for all edges e = {u, v} ∈ E it
holds that ϕ(u) = ψ(e)⇒ ϕ(v) 6= ψ(e).

17 / 26

Graph problem definitions

Problem (Sinkless colouring)

Given an edge d-coloured d-regular graph G = (V ,E , ψ), find a sinkless
colouring ϕ. That is, compute a colouring ϕ such that for no edge
e = {u, v} ∈ E we have ϕ(u) = ϕ(v) = ψ(e).

Problem (Sinkless orientation)

Given an edge d-coloured d-regular graph G = (V ,E , ψ), find a sinkless
orientation. That is, compute an orientation σ such that out-deg(v , σ) > 0
for all v ∈ V .

18 / 26

Graph problem definitions: example

(a) (b) (c)

Figure: (a) A 3-regular edge 3-coloured graph. (b) A sinkless orientation. (c) A
sinkless colouring.

19 / 26

From LLL to Sinkless Orientation

Theorem

Let f : N→ R be such that f (4) ≤ 16. Let A be a Monte Carlo distributed
algorithm for LLL such that A finds an assignment avoiding all the bad
events under the LLL criteria pf (d) ≤ 1 in time T for some T : N→ N.
Then there is a Monte Carlo distributed algorithm B that finds a sinkless
orientation in 3-regular graphs of girth at least 5 in time O(T).

We start with 4-regular graphs G = (V ,E).

Set vbl(Ev) = {Xe : v ∈ e} for each v ∈ V

For each e = {u, v} ∈ E , the variable Xe ranges over {u → v , u ← v}
The bad event Ev occurs exactly when for all neighbours u of v the
variable X{v ,u} takes the value u → v

20 / 26

From LLL to Sinkless Orientation

Theorem

Let f : N→ R be such that f (4) ≤ 16. Let A be a Monte Carlo distributed
algorithm for LLL such that A finds an assignment avoiding all the bad
events under the LLL criteria pf (d) ≤ 1 in time T for some T : N→ N.
Then there is a Monte Carlo distributed algorithm B that finds a sinkless
orientation in 3-regular graphs of girth at least 5 in time O(T).

We start with 4-regular graphs G = (V ,E).

Set vbl(Ev) = {Xe : v ∈ e} for each v ∈ V

For each e = {u, v} ∈ E , the variable Xe ranges over {u → v , u ← v}
The bad event Ev occurs exactly when for all neighbours u of v the
variable X{v ,u} takes the value u → v

20 / 26

From LLL to Sinkless Orientation

If the variables Xe are sampled uniformly at random, we have
Pr(Ev) = 1/24 = 1/16 for each v ∈ V .

Let p = 1/16 and d = 4. Now Pr(Ev) ≤ p and Ev depends on d other
events for each v ∈ V , and the condition pf (d) ≤ 1 holds, given
f (4) ≤ 16.

Run the algorithm A and define an orientation σ of G by setting
σ(e) = av (Xe), where v ∈ e, for each e ∈ E .

Now σ is a sinkless orientation of G .

21 / 26

From 3-regular to 4-regular graphs

LLL is not directly applicable: the probability of bad events would be
p = 1/23 = 1/8 and thus ep(d + 1) > 1.

Contract edges of one colour class to obtain a 4-regular graph.

Simulate the algorithm for the 4-regular case in the 3-regular graph.

(a) (b)

(d)(c)

22 / 26

From 3-regular to 4-regular graphs

LLL is not directly applicable: the probability of bad events would be
p = 1/23 = 1/8 and thus ep(d + 1) > 1.

Contract edges of one colour class to obtain a 4-regular graph.

Simulate the algorithm for the 4-regular case in the 3-regular graph.

(a) (b)

(d)(c)

22 / 26

The Mutual Speedup Lemma

Lemma

Suppose B is a sinkless colouring algorithm that runs in t rounds such that
for any edge e = {u, v} the probability of outputting a forbidden
configuration B(u) = ψ(e) = B(v) is at most p. Then there exists a
sinkless orientation algorithm B ′ that runs in t rounds such that for any
node u the probability of being a sink is at most 6p1/3.

Lemma

Suppose B ′ is a sinkless orientation algorithm that runs in time t such that
the probability that any node u is a sink is at most `. Then there exists a
sinkless colouring algorithm B ′′ that runs in time t − 1 such that the
probability for any edge e = {u, v} having a forbidden configuration
B ′′(u) = ψ(e) = B ′′(v) is less than 4`1/4.

23 / 26

The Mutual Speedup Lemma

Lemma

Suppose B is a sinkless colouring algorithm that runs in t rounds such that
for any edge e = {u, v} the probability of outputting a forbidden
configuration B(u) = ψ(e) = B(v) is at most p. Then there exists a
sinkless orientation algorithm B ′ that runs in t rounds such that for any
node u the probability of being a sink is at most 6p1/3.

Lemma

Suppose B ′ is a sinkless orientation algorithm that runs in time t such that
the probability that any node u is a sink is at most `. Then there exists a
sinkless colouring algorithm B ′′ that runs in time t − 1 such that the
probability for any edge e = {u, v} having a forbidden configuration
B ′′(u) = ψ(e) = B ′′(v) is less than 4`1/4.

23 / 26

From colouring to orientation: the proof idea

Given a randomised sinkless colouring algorithm B running in t rounds,
construct a randomised sinkless orientation algorithm B ′ that also runs
in t rounds.

We write B(u) for the colour that u outputs according to B and B ′(e)
for the orientation B ′ outputs for edge e.

We denote the radius-t neighbourhood of a node u by
Nt(u) = {v ∈ V : dist(u, v) ≤ t}, where dist(u, v) is the length of
the shortest path between u and v .

The radius-t neighbourhood of an edge {u, v} is
Nt({u, v}) = Nt(u) ∩ Nt(v).

24 / 26

From colouring to orientation: the proof idea

Consider any node u ∈ V . Algorithm B ′ consists of three steps:

1 Node u gathers its radius-t neighbourhood Nt(u) in t rounds.

2 Node u computes the set C (u) of candidate colours:

C (u) = {ψ(e) : Pr[B(u) = ψ(e) | Nt(e)] ≥ p1/3 and e = {u, v}},

In addition, for each e = {u, v} node u calculates the probability of v
outputting the colour ψ(e) when executing B. Thus u can determine
whether ψ(e) ∈ C (v).

3 If ψ(e) ∈ C (u) ∩ C (v) or ψ(e) /∈ C (u) ∪ C (v), choose the orientation
B ′(e) of edge e arbitrarily. Otherwise, edge e is oriented according to
the following rule:

B ′(e) =

{
u → v if ψ(e) ∈ C (u) and ψ(e) /∈ C (v),

u ← v if ψ(e) /∈ C (u) and ψ(e) ∈ C (v).

25 / 26

From colouring to orientation: the proof idea

Consider any node u ∈ V . Algorithm B ′ consists of three steps:

1 Node u gathers its radius-t neighbourhood Nt(u) in t rounds.

2 Node u computes the set C (u) of candidate colours:

C (u) = {ψ(e) : Pr[B(u) = ψ(e) | Nt(e)] ≥ p1/3 and e = {u, v}},

In addition, for each e = {u, v} node u calculates the probability of v
outputting the colour ψ(e) when executing B. Thus u can determine
whether ψ(e) ∈ C (v).

3 If ψ(e) ∈ C (u) ∩ C (v) or ψ(e) /∈ C (u) ∪ C (v), choose the orientation
B ′(e) of edge e arbitrarily. Otherwise, edge e is oriented according to
the following rule:

B ′(e) =

{
u → v if ψ(e) ∈ C (u) and ψ(e) /∈ C (v),

u ← v if ψ(e) /∈ C (u) and ψ(e) ∈ C (v).

25 / 26

Conclusion

There is a randomised distributed algorithm for LLL that runs in
O(log n) rounds in bounded-degree graphs.

The best previously known lower bound was Ω(log∗ n) rounds.

We show that any randomised Monte Carlo algorithm for LLL that
finds a satisfying assignment with high probability requires Ω(log log n)
rounds.

26 / 26

	The Lovász local lemma
	Our model of distributed computing
	A lower bound for the distributed LLL

