
A tight lower bound for simulating multiset model
by set model in distributed computing

Tuomo Lempiäinen

Department of Computer Science, Aalto University

Finite model theory seminar, University of Helsinki, 20th February 2015

1 / 47

Distributed system

A graph, whose each node

runs the same algorithm,

can communicate with its
neighbours,

produces a local output.

2 / 47

Communication in synchronous rounds

v

←
a

b
→

In every round, each node v

1 sends messages to its neighbours,

2 receives messages from its
neighbours,

3 updates its state.

After the final round, each node
announces its own output.

3 / 47

Communication in synchronous rounds

v

c →
←

d

In every round, each node v

1 sends messages to its neighbours,

2 receives messages from its
neighbours,

3 updates its state.

After the final round, each node
announces its own output.

3 / 47

Communication in synchronous rounds

v

In every round, each node v

1 sends messages to its neighbours,

2 receives messages from its
neighbours,

3 updates its state.

After the final round, each node
announces its own output.

3 / 47

Communication in synchronous rounds

v

In every round, each node v

1 sends messages to its neighbours,

2 receives messages from its
neighbours,

3 updates its state.

After the final round, each node
announces its own output.

3 / 47

Focus on communication, not computation

∆ = 3
n = 6

The running time of an algorithm is
the number of communications
rounds.

The running time may depend on

the maximum degree of the
graph, ∆,

the number of nodes, n.

4 / 47

Port numbering

A port of a graph G = (V ,E) is a pair (v , i), where v ∈ V and
i ∈ {1, 2, . . . , deg(v)}. Let P(G) be the set of all ports of G . A port
numbering of G is a bijection p : P(G)→ P(G) such that

p(v , i) = (u, j) for some i and j if and only if {v , u} ∈ E .

u

v

2

1

3

2

w

2

2

1

1

Intuitively, if p(v , i) = (u, j), then (v , i) is an
output port of node v that is connected to an
input port (u, j) of node u.

p(u, 2) = (v , 3),

p(v , 2) = (u, 1),

p(u, 1) = (w , 1),

...

5 / 47

Consistent port numbering

We say that a port numbering p is consistent if we have

p(p(v , i)) = (v , i) for all (v , i) ∈ P(G),

or, in other words, if the input port and the output port connected to the
same neighbour always have the same number.

u

v

2

1

2

1

w

3

2

3

2

p(u, 1) = (v , 2),

p(v , 2) = (u, 1),

p(u, 2) = (w , 3),

p(w , 3) = (u, 2),

...

6 / 47

Bounded-degree graphs and local inputs

For each positive integer ∆, denote by F(∆) the class of all simple
undirected graphs of maximum degree at most ∆.

An input for a graph G = (V ,E) is a function f : V → X , where X 3 ∅ is a
finite set. For each v ∈ V , the value f (v) is called the local input of v .

The symbol ∅ ∈ X is used to indicate “no input”.

7 / 47

Bounded-degree graphs and local inputs

For each positive integer ∆, denote by F(∆) the class of all simple
undirected graphs of maximum degree at most ∆.

An input for a graph G = (V ,E) is a function f : V → X , where X 3 ∅ is a
finite set. For each v ∈ V , the value f (v) is called the local input of v .

The symbol ∅ ∈ X is used to indicate “no input”.

7 / 47

Algorithms as state machines

Let ∆ ∈ N+ and let X be a set of local inputs. A distributed state machine
for (F(∆),X) is a tuple A = (Y ,Z , σ0,M, µ, σ), where

Y is a set of states,

Z ⊆ Y is a finite set of stopping states,

σ0 : {0, 1, . . . ,∆} × X → Y is a function that defines the initial state,

M is a set of messages such that ε ∈ M,

µ : Y × [∆]→ M is a function that constructs the outgoing messages,
such that µ(z , i) = ε for all z ∈ Z and i ∈ [∆],

σ : Y ×M∆ → Y is a function that defines the state transitions, such
that σ(z ,m) = z for all z ∈ Z and m ∈ M∆.

The special symbol ε ∈ M indicates “no message”.

8 / 47

Execution

Let G = (V ,E) ∈ F(∆), let p be a port numbering of G , let f : V → X ,
and let A be a distributed state machine for (F(∆),X).

The state of the system in round r ∈ N is a function xr : V → Y , where
xr (v) is the state of node v in round r . To initialise the nodes, set

x0(v) = σ0(deg(v), f (v)) for each v ∈ V .

Then, assume that xr is defined for some r ∈ N. Let (u, j) ∈ P(G) and
(v , i) = p(u, j). Now, node v receives the message

ar+1(v , i) = µ(xr (u), j)

from its port (v , i) in round r + 1. For each v ∈ V , we define

ar+1(v) = (ar+1(v , 1), ar+1(v , 2), . . . , ar+1(v , deg(v)), ε, ε, . . . , ε) ∈ M∆.

Now we can define the new state of each node v ∈ V as follows:

xr+1(v) = σ(xr (v), ar+1(v)).

9 / 47

Execution

Let G = (V ,E) ∈ F(∆), let p be a port numbering of G , let f : V → X ,
and let A be a distributed state machine for (F(∆),X).

The state of the system in round r ∈ N is a function xr : V → Y , where
xr (v) is the state of node v in round r . To initialise the nodes, set

x0(v) = σ0(deg(v), f (v)) for each v ∈ V .

Then, assume that xr is defined for some r ∈ N. Let (u, j) ∈ P(G) and
(v , i) = p(u, j). Now, node v receives the message

ar+1(v , i) = µ(xr (u), j)

from its port (v , i) in round r + 1. For each v ∈ V , we define

ar+1(v) = (ar+1(v , 1), ar+1(v , 2), . . . , ar+1(v , deg(v)), ε, ε, . . . , ε) ∈ M∆.

Now we can define the new state of each node v ∈ V as follows:

xr+1(v) = σ(xr (v), ar+1(v)).

9 / 47

Running time

Let t ∈ N. If xt(v) ∈ Z for all v ∈ V , we say that A stops in time t in
(G , f , p).

The running time of A in (G , f , p) is the smallest t for which this holds.

If A stops in time t in (G , f , p), the output of A in (G , f , p) is xt : V → Y .

For each v ∈ V , the local output of v is xt(v).

10 / 47

Graph problems

We study graph problems where

problem instance is the communication graph (and the possible local
inputs),

the local outputs together define a solution.

Let X and Y be finite nonempty sets.

A graph problem is a function ΠX ,Y that maps each undirected simple
graph G = (V ,E) and each input f : V → X to a set ΠX ,Y (G , f) of
solutions.

Each solution S ∈ ΠX ,Y (G , f) is a function S : V → Y .

11 / 47

Graph problems

We study graph problems where

problem instance is the communication graph (and the possible local
inputs),

the local outputs together define a solution.

Let X and Y be finite nonempty sets.

A graph problem is a function ΠX ,Y that maps each undirected simple
graph G = (V ,E) and each input f : V → X to a set ΠX ,Y (G , f) of
solutions.

Each solution S ∈ ΠX ,Y (G , f) is a function S : V → Y .

11 / 47

Solving a graph problem

Let ΠX ,Y be a graph problem, T : N× N→ N and A = (A1,A2, . . .) such
that each A∆ is a distributed state machine for (F(∆),X). Algorithm A
solves ΠX ,Y in time T if the following holds for all ∆ ∈ N, all finite
graphs G = (V ,E) ∈ F(∆), all inputs f : V → X and all port
numberings p of G :

1 A∆ stops in time T (∆, |V |) in (G , f , p).

2 The output of A∆ in (G , f , p) is in ΠX ,Y (G , f).

We say that A solves ΠX ,Y in time T assuming consistency if the above
holds for all consistent port numberings p of G .

If T (∆, n) does not depend on n, we say that A solves ΠX ,Y in constant
time or that A is a local algorithm for ΠX ,Y .

12 / 47

Solving a graph problem

Let ΠX ,Y be a graph problem, T : N× N→ N and A = (A1,A2, . . .) such
that each A∆ is a distributed state machine for (F(∆),X). Algorithm A
solves ΠX ,Y in time T if the following holds for all ∆ ∈ N, all finite
graphs G = (V ,E) ∈ F(∆), all inputs f : V → X and all port
numberings p of G :

1 A∆ stops in time T (∆, |V |) in (G , f , p).

2 The output of A∆ in (G , f , p) is in ΠX ,Y (G , f).

We say that A solves ΠX ,Y in time T assuming consistency if the above
holds for all consistent port numberings p of G .

If T (∆, n) does not depend on n, we say that A solves ΠX ,Y in constant
time or that A is a local algorithm for ΠX ,Y .

12 / 47

Graph problems

Often the solution S : V → Y is an
encoding of a subset of vertices or
edges of the graph.

Example problems:

minimum vertex cover,

maximal matching.

13 / 47

Graph problems

Often the solution S : V → Y is an
encoding of a subset of vertices or
edges of the graph.

Example problems:

minimum vertex cover,

maximal matching.

13 / 47

Graph problems

Often the solution S : V → Y is an
encoding of a subset of vertices or
edges of the graph.

Example problems:

minimum vertex cover,

maximal matching.

13 / 47

Variants of the model of computation

VV is the class of all distributed state machines (send a vector, receive a
vector).

We can place different restrictions on the algorithms:

VB: broadcast the same message to all neighbours:

µ(y , i) = µ(y , j) for all i , j ∈ {1, 2, . . . ,∆} and y ∈ Y ,

MV: receive a multiset of messages:

multiset(a) = multiset(b)⇒ σ(y , a) = σ(y , b) for all y ∈ Y ,

SV: receive a set of messages:

set(a) = set(b)⇒ σ(y , a) = σ(y , b) for all y ∈ Y ,

MB =MV ∩ VB and SB = SV ∩ VB.

14 / 47

Variants of the model of computation

VV is the class of all distributed state machines (send a vector, receive a
vector).

We can place different restrictions on the algorithms:

VB: broadcast the same message to all neighbours:

µ(y , i) = µ(y , j) for all i , j ∈ {1, 2, . . . ,∆} and y ∈ Y ,

MV: receive a multiset of messages:

multiset(a) = multiset(b)⇒ σ(y , a) = σ(y , b) for all y ∈ Y ,

SV: receive a set of messages:

set(a) = set(b)⇒ σ(y , a) = σ(y , b) for all y ∈ Y ,

MB =MV ∩ VB and SB = SV ∩ VB.

14 / 47

Variants of the model of computation

VV is the class of all distributed state machines (send a vector, receive a
vector).

We can place different restrictions on the algorithms:

VB: broadcast the same message to all neighbours:

µ(y , i) = µ(y , j) for all i , j ∈ {1, 2, . . . ,∆} and y ∈ Y ,

MV: receive a multiset of messages:

multiset(a) = multiset(b)⇒ σ(y , a) = σ(y , b) for all y ∈ Y ,

SV: receive a set of messages:

set(a) = set(b)⇒ σ(y , a) = σ(y , b) for all y ∈ Y ,

MB =MV ∩ VB and SB = SV ∩ VB.
14 / 47

Variants of the model of computation

VV = {(A1,A2, . . .) : A∆ ∈ VV for all ∆},
MV = {(A1,A2, . . .) : A∆ ∈MV for all ∆},
SV = {(A1,A2, . . .) : A∆ ∈ SV for all ∆},
VB = {(A1,A2, . . .) : A∆ ∈ VB for all ∆},
MB = {(A1,A2, . . .) : A∆ ∈MB for all ∆},
SB = {(A1,A2, . . .) : A∆ ∈ SB for all ∆}.

15 / 47

Complexity classes

Let P be the class of all graph problems.

VVc = {Π ∈ P : there is A ∈ VV that solves Π assuming consistency},
VV = {Π ∈ P : there is A ∈ VV that solves Π},
MV = {Π ∈ P : there is A ∈MV that solves Π},
SV = {Π ∈ P : there is A ∈ SV that solves Π},
VB = {Π ∈ P : there is A ∈ VB that solves Π},
MB = {Π ∈ P : there is A ∈MB that solves Π},
SB = {Π ∈ P : there is A ∈ SB that solves Π}.

16 / 47

Containment relations between the classes

VVc

VV

MV

SV

VB

MB

SB

Trivial relations:

SV ⊆ MV ⊆ VV ⊆ VVc,

SB ⊆ MB ⊆ VB,

VB ⊆ VV,

MB ⊆ MV,

SB ⊆ SV.

Non-trivial: SV ⊆ VB? VB ⊆ SV?

17 / 47

Containment relations between the classes

VVc

VV

6=

MV

=

SV

=

VB

MB

=

SB

6=

6=

Hella, Järvisalo, Kuusisto, Laurinharju, L.,
Luosto, Suomela, Virtema (PODC 2012):

SB (MB = VB (SV = MV = VV (VVc.

18 / 47

Simulation results

VVc

VV

6=

MV

=

SV

=

VB

MB

=

SB

6=

6=

Equalities are proved by showing that
seemingly more powerful algorithms can be
simulated by seemingly weaker algorithms.

MV = VV and MB = VB: the
simulation does not increase running
time.

SV = MV: the running time increases by
2∆− 2 rounds.

19 / 47

New contributions

VVc

VV

6=

MV

=

SV

=

VB

MB

=

SB

6=

6=

SV = MV: the running time increases by
2∆− 2 rounds.

Question: Is the overhead of 2∆− 2 rounds
optimal?

Answer: Yes

A so-called simulation problem requires
exactly 2∆− 2 rounds.

In the case of graph problems, a
linear-in-∆ overhead is necessary.

20 / 47

New contributions

VVc

VV

6=

MV

=

SV

=

VB

MB

=

SB

6=

6=

SV = MV: the running time increases by
2∆− 2 rounds.

Question: Is the overhead of 2∆− 2 rounds
optimal?

Answer: Yes

A so-called simulation problem requires
exactly 2∆− 2 rounds.

In the case of graph problems, a
linear-in-∆ overhead is necessary.

20 / 47

The relationship of MV and SV

Trivially SV ⊆ MV.

Hella, Järvisalo, Kuusisto, Laurinharju, L., Luosto, Suomela, Virtema
(PODC 2012):

Theorem

Let Π be a graph problem and let T : N× N→ N. Assume that there is an
algorithm A ∈MV that solves Π in time T . Then there is an algorithm
B ∈ SV that solves Π in time T ′, where T ′(n,∆) = T (n,∆) + 2∆− 2.

It follows that SV = MV.

21 / 47

Idea behind the simulation theorem

First, solve the following simulation problem by an SV-algorithm:

u

v
p1

w
p2

If p1 = p2, then
output(v) 6= output(w).

Now the pair

(output, port number)

is distinct for each neighbour.

This takes 2∆− 2 communication rounds.

Then, simulate the MV-algorithm by attaching the above pair to each
message. That way we can reconstruct the message multiplicities.

22 / 47

Idea behind the simulation theorem

First, solve the following simulation problem by an SV-algorithm:

u

v
p1

w
p2

If p1 = p2, then
output(v) 6= output(w).

Now the pair

(output, port number)

is distinct for each neighbour.

This takes 2∆− 2 communication rounds.

Then, simulate the MV-algorithm by attaching the above pair to each
message. That way we can reconstruct the message multiplicities.

22 / 47

The new results: lower bounds for the simulation

Is the overhead of 2∆− 2 rounds really needed to reconstruct the message
multiplicities by an SV-algorithm?

Theorem

For each ∆ ≥ 2 there is a graph G = (V ,E) ∈ F(∆), a port numbering p
of G and nodes v , u,w ∈ V such that when executing any
algorithm A ∈ SV in (G , p), node v receives identical messages from its
neighbours u and w in rounds 1, 2, . . . , 2∆− 2.

Theorem

There is a graph problem Π that can be solved in one round by an algorithm
in MV but that requires at least time T , where T (n,∆) ≥ ∆ for all ∆ ≥ 2,
when solved by an algorithm in SV.

23 / 47

The new results: lower bounds for the simulation

Is the overhead of 2∆− 2 rounds really needed to reconstruct the message
multiplicities by an SV-algorithm?

Theorem

For each ∆ ≥ 2 there is a graph G = (V ,E) ∈ F(∆), a port numbering p
of G and nodes v , u,w ∈ V such that when executing any
algorithm A ∈ SV in (G , p), node v receives identical messages from its
neighbours u and w in rounds 1, 2, . . . , 2∆− 2.

Theorem

There is a graph problem Π that can be solved in one round by an algorithm
in MV but that requires at least time T , where T (n,∆) ≥ ∆ for all ∆ ≥ 2,
when solved by an algorithm in SV.

23 / 47

Example: a problem instance separating SV and MV

u

1

1

1

3

1

2

3

2

1

2

1

21
3

1
3

v

1

1

1

3

1

2

2

2

1

2

1

21
3

Output 1 if there is an even number of neighbours of even degree, 0
otherwise.

24 / 47

Lower-bound construction for the simulation problem

25 / 47

1

1

2

2

1

1

1

3

3

4

3

3

1

1

1

2

2

4

4

4

1

1

1

2

2

3

1

2

1

2

1

2

1

3

3

4

3

3

1

1

1

2

2

4

4

4

1

1

1

2

2

3

2

3

1

1

1

2

2

3

3

4

2

3

1

1

1

3

2

4

4

4

1

1

1

2

2

3

3

4

1

1

1

2

2

3

3

4

2

2

1

1

1

3

3

4

3

4

1

1

1

2

2

4

...

Proof idea

1 Investigate walks that start from the blue nodes and follow an identical
sequence of port numbers.

1 In which cases we cannot extend the walks in a consistent manner?
2 What is the length of such maximal walks?

2 Prove a lower bound for the length of the walks.

3 Show that the lower bound on walks implies bisimilarity of the blue
nodes up to a certain distance.

4 Bisimilarity entails a lower bound for the running time of any
distributed algorithm that is able to distinguish the nodes.

26 / 47

Proof idea

1 Investigate walks that start from the blue nodes and follow an identical
sequence of port numbers.

1 In which cases we cannot extend the walks in a consistent manner?
2 What is the length of such maximal walks?

2 Prove a lower bound for the length of the walks.

3 Show that the lower bound on walks implies bisimilarity of the blue
nodes up to a certain distance.

4 Bisimilarity entails a lower bound for the running time of any
distributed algorithm that is able to distinguish the nodes.

26 / 47

Proof idea

1 Investigate walks that start from the blue nodes and follow an identical
sequence of port numbers.

1 In which cases we cannot extend the walks in a consistent manner?
2 What is the length of such maximal walks?

2 Prove a lower bound for the length of the walks.

3 Show that the lower bound on walks implies bisimilarity of the blue
nodes up to a certain distance.

4 Bisimilarity entails a lower bound for the running time of any
distributed algorithm that is able to distinguish the nodes.

26 / 47

Notation for outgoing port numbers

If p(v , i) = (u, j), we write π(v , u) = i . That is, π(v , u) is the number of
the output port of v that is connected to u.

27 / 47

Definition of the graph Gd

1 ∅ ∈ Vd .
2 ((1, 0)), ((2, 1)), ((3, 2)), ((4, 3)), . . . , ((d , d − 1)) ∈ Vd .
3 If (a1, a2, . . . , ai) ∈ Vd , where i is odd and i < 2d , then

(a1, a2, . . . , a
j
i+1) ∈ Vd for all j = 1, 2, . . . , d − 1, where aji+1 = (c j

1, c
j
2)

is defined as follows. Let (b1, b2) = ai and b+
2 = 1 if b2 = 0, b+

2 = b2

otherwise. Define

c j
1 = min({1, 2, . . . , d} \ {b+

2 , c
1
1 , c

2
1 , . . . , c

j−1
1 }),

c j
2 = min({1, 2, . . . , d} \ {b1, c

1
2 , c

2
2 , . . . , c

j−1
2 }).

4 If (a1, a2, . . . , ai) ∈ Vd , where i is even and 0 < i < 2d , then
(a1, a2, . . . , a

j
i+1) ∈ Vd for all j = 1, 2, . . . , d − 1, where aji+1 = (c j

1, c
j
2)

is defined as follows. Let (b1, b2) = ai . Define

c j
1 = min({1, 2, . . . , d} \ {b2, c

1
1 , c

2
1 , . . . , c

j−1
1 }),

c j
2 = min({0, 1, . . . , d − 1} \ {b1, c

1
2 , c

2
2 , . . . , c

j−1
2 }).

28 / 47

Graph Gd for d = 4

29 / 47

1

1

2

2

1

1

1

3

3

4

3

3

1

1

1

2

2

4

4

4

1

1

1

2

2

3

1

2

1

2

1

2

1

3

3

4

3

3

1

1

1

2

2

4

4

4

1

1

1

2

2

3

2

3

1

1

1

2

2

3

3

4

2

3

1

1

1

3

2

4

4

4

1

1

1

2

2

3

3

4

1

1

1

2

2

3

3

4

2

2

1

1

1

3

3

4

3

4

1

1

1

2

2

4

...

Graph Gd for d = 4

29 / 47

0

1

2

2

0

1

1

3

3

4

3

3

0

1

1

2

2

4

4

4

0

1

1

2

2

3

1

2

1

2

0

2

1

3

3

4

3

3

0

1

1

2

2

4

4

4

0

1

1

2

2

3

2

3

1

1

0

2

2

3

3

4

2

3

0

1

1

3

2

4

4

4

0

1

1

2

2

3

3

4

1

1

0

2

2

3

3

4

2

2

0

1

1

3

3

4

3

4

0

1

1

2

2

4

...

Definition of the graph Gd

The set Ed of edges consists of all pairs {v , u}, where
v = (a1, a2, . . . , ai) ∈ Vd and u = (a1, a2, . . . , ai , ai+1) ∈ Vd for some
i ∈ {0, 1, . . .}.

If v = (a1, a2, . . . , ai) and u = (a1, a2, . . . , ai+1), where ai+1 = (b1, b2), the
outgoing port number from v to u is πd(v , u) = b1 and the outgoing port
number from u to v is πd(u, v) = b2.

30 / 47

Pairs of separating walks (PSWs)

A walk is a sequence v = (v0, v1, . . . , vk) of nodes such that {vi , vi+1} ∈ Ed

for all i = 0, 1, . . . , k − 1.

A pair (v 1, v 2) of walks, where v i = (v i
0, v

i
1, . . . , v

i
k) for all i = 1, 2, is called

a pair of separating walks (PSW) of length k in Gd if the following
conditions hold:

1 v 1
0 = ((1, 0)) and v 2

0 = ((2, 1)).

2 πd(v 1
j , v

1
j−1) = πd(v 2

j , v
2
j−1) for all j = 1, 2, . . . , k.

3 There is v 1
k+1 ∈ Vd with {v 1

k , v
1
k+1} ∈ Ed such that there is no

v 2
k+1 ∈ Vd for which {v 2

k , v
2
k+1} ∈ Ed and

πd(v 1
k+1, v

1
k) = πd(v 2

k+1, v
2
k).

We say that a pair of separating walks of length k in Gd is critical if there
does not exist a pair of separating walks of length k ′ in Gd for any k ′ < k.

31 / 47

A pair of separating walks in G4

32 / 47

0

1

2

2

0

1

1

3

3

4

3

3

0

1

1

2

2

4

4

4

0

1

1

2

2

3

1

2

1

2

0

2

1

3

3

4

3

3

0

1

1

2

2

4

4

4

0

1

1

2

2

3

2

3

1

1

0

2

2

3

3

4

2

3

0

1

1

3

2

4

4

4

0

1

1

2

2

3

3

4

1

1

0

2

2

3

3

4

2

2

0

1

1

3

3

4

3

4

0

1

1

2

2

4

...

A pair of separating walks in G4

32 / 47

0

1

2

2

0

1

1

3

3

4

3

3

0

1

1

2

2

4

4

4

0

1

1

2

2

3

1

2

1

2

0

2

1

3

3

4

3

3

0

1

1

2

2

4

4

4

0

1

1

2

2

3

2

3

1

1

0

2

2

3

3

4

2

3

0

1

1

3

2

4

4

4

0

1

1

2

2

3

3

4

1

1

0

2

2

3

3

4

2

2

0

1

1

3

3

4

3

4

0

1

1

2

2

4

...

2,. . .

A pair of separating walks in G4

32 / 47

0

1

2

2

0

1

1

3

3

4

3

3

0

1

1

2

2

4

4

4

0

1

1

2

2

3

1

2

1

2

0

2

1

3

3

4

3

3

0

1

1

2

2

4

4

4

0

1

1

2

2

3

2

3

1

1

0

2

2

3

3

4

2

3

0

1

1

3

2

4

4

4

0

1

1

2

2

3

3

4

1

1

0

2

2

3

3

4

2

2

0

1

1

3

3

4

3

4

0

1

1

2

2

4

...

2,2,. . .

A pair of separating walks in G4

32 / 47

0

1

2

2

0

1

1

3

3

4

3

3

0

1

1

2

2

4

4

4

0

1

1

2

2

3

1

2

1

2

0

2

1

3

3

4

3

3

0

1

1

2

2

4

4

4

0

1

1

2

2

3

2

3

1

1

0

2

2

3

3

4

2

3

0

1

1

3

2

4

4

4

0

1

1

2

2

3

3

4

1

1

0

2

2

3

3

4

2

2

0

1

1

3

3

4

3

4

0

1

1

2

2

4

...

2,2,3,. . .

A pair of separating walks in G4

32 / 47

0

1

2

2

0

1

1

3

3

4

3

3

0

1

1

2

2

4

4

4

0

1

1

2

2

3

1

2

1

2

0

2

1

3

3

4

3

3

0

1

1

2

2

4

4

4

0

1

1

2

2

3

2

3

1

1

0

2

2

3

3

4

2

3

0

1

1

3

2

4

4

4

0

1

1

2

2

3

3

4

1

1

0

2

2

3

3

4

2

2

0

1

1

3

3

4

3

4

0

1

1

2

2

4

...

2,2,3,3,. . .

A pair of separating walks in G4

32 / 47

0

1

2

2

0

1

1

3

3

4

3

3

0

1

1

2

2

4

4

4

0

1

1

2

2

3

1

2

1

2

0

2

1

3

3

4

3

3

0

1

1

2

2

4

4

4

0

1

1

2

2

3

2

3

1

1

0

2

2

3

3

4

2

3

0

1

1

3

2

4

4

4

0

1

1

2

2

3

3

4

1

1

0

2

2

3

3

4

2

2

0

1

1

3

3

4

3

4

0

1

1

2

2

4

...

2,2,3,3,4,. . .

A pair of separating walks in G4

32 / 47

0

1

2

2

0

1

1

3

3

4

3

3

0

1

1

2

2

4

4

4

0

1

1

2

2

3

1

2

1

2

0

2

1

3

3

4

3

3

0

1

1

2

2

4

4

4

0

1

1

2

2

3

2

3

1

1

0

2

2

3

3

4

2

3

0

1

1

3

2

4

4

4

0

1

1

2

2

3

3

4

1

1

0

2

2

3

3

4

2

2

0

1

1

3

3

4

3

4

0

1

1

2

2

4

...

?2,2,3,3,4

How to prove that two nodes stay in the same state?

Definition

Let G = (V ,E) and G ′ = (V ′,E ′) be graphs, let f and f ′ be inputs for G
and G ′, respectively, and let p and p′ be port numberings of G and G ′,
respectively. An r -SV-bisimulation between nodes v ∈ V and v ′ ∈ V ′ is a
sequence of binary relations Br ⊆ Br−1 ⊆ · · · ⊆ B0 ⊆ V × V ′ such that the
following conditions hold for 1 ≤ i ≤ r :

1 (v , v ′) ∈ Br .

2 If (u, u′) ∈ B0, then degG (u) = degG ′(u′) and f (u) = f ′(u′).

3 If (u, u′) ∈ Bi and {u,w} ∈ E , then there is w ′ ∈ V ′ such that
{u′,w ′} ∈ E ′, (w ,w ′) ∈ Bi−1 and π(w , u) = π′(w ′, u′).

4 If (u, u′) ∈ Bi and {u′,w ′} ∈ E ′, then there is w ∈ V such that
{u,w} ∈ E , (w ,w ′) ∈ Bi−1 and π(w , u) = π′(w ′, u′).

33 / 47

How to prove that two nodes stay in the same state?

We say that v ∈ V and v ′ ∈ V ′ are r -SV-bisimilar and write
(G , f , v , p)↔SVr (G ′, f ′, v ′, p′) (or simply v ↔SVr v ′) if there exists an
r -SV-bisimulation between them.

Lemma

Let G = (V ,E) and G ′ = (V ′,E ′) be graphs, let f and f ′ be inputs for G
and G ′, respectively, and let p and p′ be port numberings of G and G ′,
respectively. If (G , f , v , p)↔SVr (G ′, f ′, v ′, p′) for some r ∈ N, v ∈ V and
v ′ ∈ V ′, then for all algorithms A ∈ SV we have xt(v) = x ′t(v ′) for all
t = 0, 1, . . . , r , that is, the state of v and v ′ is identical in rounds 0, 1, . . . , r .

34 / 47

Bisimilarity

Lemma

The r-SV-bisimilarity relation ↔SVr is an equivalence relation in the class
of quadruples (G , f , v , p), where G = (V ,E) is a graph, f is an input for G ,
p is a port numbering of G and v ∈ V .

Lemma

Let G = (V ,E) and G ′ = (V ′,E ′) be graphs, let f and f ′ be inputs for G
and G ′, respectively, let p and p′ be port numberings of G and G ′,
respectively, and let v ∈ V , v ′ ∈ V ′. Then (G , f , v , p)↔SVr (G ′, f ′, v ′, p′)
iff the following conditions hold:

1 (G , f , v , p)↔SVr−1 (G ′, f ′, v ′, p′).

2 If {v ,w} ∈ E, then there is w ′ ∈ V ′ such that {v ′,w ′} ∈ E ′,
(G , f ,w , p)↔SVr−1 (G ′, f ′,w ′, p′) and π(w , v) = π′(w ′, v ′).

3 If {v ′,w ′} ∈ E ′, then there is w ∈ V such that {v ,w} ∈ E,
(G , f ,w , p)↔SVr−1 (G ′, f ′,w ′, p′) and π(w , v) = π′(w ′, v ′).

35 / 47

Definitions

If v = (a1, a2, . . . , ai) and u = (a1, a2, . . . , ai+1), we say that node v is the
parent of node u and that u is a child of v .

We say that the node v is even if i is even and odd if i is odd.

If ai = (b1, b2), we call (b1, b2) the type of node v .

36 / 47

Easy observations

Lemma

For each d, we have deg(v) ∈ {1, d} for all v ∈ Vd , and thus Gd ∈ F(d).
Additionally, Gd is a subgraph of Gd+1.

Lemma

Let v ∈ Vd and a ∈ {0, 1, . . . , d}. Then there is at most one node u ∈ Vd

such that {v , u} ∈ Ed and πd(u, v) = a.

37 / 47

Easy observations

Lemma

For each d, we have deg(v) ∈ {1, d} for all v ∈ Vd , and thus Gd ∈ F(d).
Additionally, Gd is a subgraph of Gd+1.

Lemma

Let v ∈ Vd and a ∈ {0, 1, . . . , d}. Then there is at most one node u ∈ Vd

such that {v , u} ∈ Ed and πd(u, v) = a.

37 / 47

Easy observations

Lemma

Let v = (a1, a2, . . . , ai) ∈ Vd , where i < 2d. If v is odd, then for all
a ∈ {1, 2, . . . , d} there exists u ∈ Vd such that {v , u} ∈ Ed and
πd(u, v) = a. If v is even, then either for all a ∈ {0, 1, . . . , d − 1} or for all
a ∈ {0, 1, . . . , d − 2, d} there exists u ∈ Vd such that {v , u} ∈ Ed and
πd(u, v) = a. In the case of even v and a = d, node u is the parent of
node v.

Lemma

Let {v , u} ∈ Ed+1 \ Ed be such that v ∈ Vd . Then u is a child of v . If v is
odd, then πd+1(v , u) = πd+1(u, v) = d + 1. If v is even, then
πd+1(v , u) = d + 1 and πd+1(u, v) ∈ {d − 1, d}.

38 / 47

Easy observations

Lemma

Let v = (a1, a2, . . . , ai) ∈ Vd , where i < 2d. If v is odd, then for all
a ∈ {1, 2, . . . , d} there exists u ∈ Vd such that {v , u} ∈ Ed and
πd(u, v) = a. If v is even, then either for all a ∈ {0, 1, . . . , d − 1} or for all
a ∈ {0, 1, . . . , d − 2, d} there exists u ∈ Vd such that {v , u} ∈ Ed and
πd(u, v) = a. In the case of even v and a = d, node u is the parent of
node v.

Lemma

Let {v , u} ∈ Ed+1 \ Ed be such that v ∈ Vd . Then u is a child of v . If v is
odd, then πd+1(v , u) = πd+1(u, v) = d + 1. If v is even, then
πd+1(v , u) = d + 1 and πd+1(u, v) ∈ {d − 1, d}.

38 / 47

Walks in isomorphic subtrees

Lemma

Let (v 1, v 2), where v i = (v i
0, v

i
1, . . . , v

i
k) for some k ≤ 2d − 3 and all

i = 1, 2, be a PSW in Gd . If for some ` ∈ {0, 1, . . . , k − 1} the node v i
`+1 is

a child of node v i
` for all i = 1, 2, and we have πd(v 1

` , v
1
`+1) = πd(v 2

` , v
2
`+1),

then (v 1, v 2) is not a critical PSW in Gd .

39 / 47

Extending a PSW

Lemma

Let (v 1, v 2) be a PSW of length k ≤ 2d − 3 in Gd . Then there is a PSW of
length k + 2 in Gd+1.

40 / 47

Second-to-last node is in Vd \ Vd−1

Lemma

Let (v 1, v 2), where v i = (v i
0, v

i
1, . . . , v

i
k) for some k ≤ 2d − 3 and all

i = 1, 2, be a critical PSW in Gd . Then we have v i
k−1 ∈ Vd \Vd−1 for some

i ∈ {1, 2}.

41 / 47

Pair of walks that is not a PSW

Lemma

Let (v 1, v 2), where v i = (v i
0, v

i
1, . . . , v

i
k) for some k ≤ 2d − 3 and all

i = 1, 2, be a pair of walks in Gd such that conditions (1) and (2) hold. If
(v 1, v 2) is not a PSW in Gd , then for each neighbour v 1

k+1 ∈ Vd of v 1
k there

is a neighbour v 2
k+1 ∈ Vd of v 2

k such that πd(v 1
k+1, v

1
k) = πd(v 2

k+1, v
2
k), and

vice versa.

42 / 47

The main lemma

Lemma

Let (v 1, v 2), where v i = (v i
0, v

i
1, . . . , v

i
k) for some k ≤ 2d − 3 and all

i = 1, 2, be a critical PSW in Gd . Then (v ′1, v
′
2), where

v ′i = (v i
0, v

i
1, . . . , v

i
k−2) for all i = 1, 2, is a PSW in Gd−1.

43 / 47

Minimum length of a PSW and bisimilarity

Lemma

Let (v 1, v 2) be a PSW of length k ≤ 2d − 3 in Gd . Then k ≥ 2d − 3.

Lemma

We have ((1, 0))↔SV2d−3 ((2, 1)), that is, the nodes ((1, 0)) and ((2, 1)) of
Gd are (2d − 3)-SV-bisimilar.

44 / 47

Minimum length of a PSW and bisimilarity

Lemma

Let (v 1, v 2) be a PSW of length k ≤ 2d − 3 in Gd . Then k ≥ 2d − 3.

Lemma

We have ((1, 0))↔SV2d−3 ((2, 1)), that is, the nodes ((1, 0)) and ((2, 1)) of
Gd are (2d − 3)-SV-bisimilar.

44 / 47

Separation by a graph problem

1
0

31
43
21 3

2 4
3

22

1

0
2

1
4

2
2

1

3

2

4

3

3

3

1

0

2

1

3

2

2

1

3

2

4

3

4

4

1
0

2

0

3

1

4

3

2

1

3

2

4

3

2

1

1

0

2

1

4

2

2

1

3

2

4

3

3

3

1

0

2

1

3

2

2

1

3

2

4

3

4

4

2

1

2

0

3

2

4

3

2

1

3

2

4

3

1

1

1

0

3

1

4

2

2

1

3

2

4

3

3

2

1

0

2

1

3

2

2

1

3

2

4

3

4

4

3

2

2

0

3

2

4

3

2

1

3

2

4
3

1

1
1

0

3
1

4 3
2 1
3

24
3

2 2

1
02

1
4

2
2

1

3

2

4

3

4

3

4 3

2

0
3

1
4

3

2

1

3

2

4

3

2

1

1

0

2

1

4

2

2

1

3

2

4

3

3

3

1

0

2

1

3

2

2

1

3

2

4

3

4

4

2

1

2

0

3

2

4

3

2

1

3

2

4

3

1

1

1

0

3

1

4

2

2

1

3

2

4

3

3

2

1

0

2

1

3

2

2

1

3

2

4

3

4

4

3

2

2

0

3

2

4

3

2

1

3

2

4

3

1

1

1

0

3

1

4

3

2

1

3

2

4

3

2

21
0

2
1

42
21
32
4

3

43

4
3

45 / 47

Separation by a graph problem

1
0

31
43
21 3

2 4
3

22

1

0
2

1
4

2
2

1

3

2

4

3

3

3

1

0

2

1

3

2

2

1

3

2

4

3

4

4

1
0

2

0

3

1

4

3

2

1

3

2

4

3

2

1

1

0

2

1

4

2

2

1

3

2

4

3

3

3

1

0

2

1

3

2

2

1

3

2

4

3

4

4

2

1

2

0

3

2

4

3

2

1

3

2

4

3

1

1

1

0

3

1

4

2

2

1

3

2

4

3

3

2

1

0

2

1

3

2

2

1

3

2

4

3

4

4

3

2

2

0

3

2

4

3

2

1

3

2

4
3

1

1
1

0

3
1

4 3
2 1
3

24
3

2 2

1
02

1
4

2
2

1

3

2

4

3

4

3

4 3

2

0
3

1
4

3

2

1

3

2

4

3

2

1

1

0

2

1

4

2

2

1

3

2

4

3

3

3

1

0

2

1

3

2

2

1

3

2

4

3

4

4

2

1

2

0

3

2

4

3

2

1

3

2

4

3

1

1

1

0

3

1

4

2

2

1

3

2

4

3

3

2

1

0

2

1

3

2

2

1

3

2

4

3

4

4

3

2

2

0

3

2

4

3

2

1

3

2

4

3

1

1

1

0

3

1

4

3

2

1

3

2

4

3

2

21
0

2
1

42
21
32
4

3

43

4
3

45 / 47

Separation by a graph problem

4

3

3

2

2

1

1

0

2

1

3

2

4

3

4

3

3

2

2

1

1

0

2

1

3

2

4

3

45 / 47

Connections to modal logic

Hella et al. (PODC 2012):

Logical characterisations for constant-time variants of the problem
classes

In a certain class of structures, SV corresponds to multimodal logic

. . . and MV corresponds to graded multimodal logic.

Our result: When given a formula φ of graded multimodal logic, we
can find an equivalent formula ψ of multimodal logic, but in general,
the modal depth md(ψ) of ψ has to be at least md(φ) + ∆− 1.

46 / 47

Connections to modal logic

Hella et al. (PODC 2012):

Logical characterisations for constant-time variants of the problem
classes

In a certain class of structures, SV corresponds to multimodal logic

. . . and MV corresponds to graded multimodal logic.

Our result: When given a formula φ of graded multimodal logic, we
can find an equivalent formula ψ of multimodal logic, but in general,
the modal depth md(ψ) of ψ has to be at least md(φ) + ∆− 1.

46 / 47

Conclusion

MV: Send a vector, receive a multiset.

SV: Send a vector, receive a set.

Previously:

It is possible to simulate MV in SV by using 2∆− 2 extra rounds.

This work:

2∆− 2 rounds are necessary to solve the simulation problem.

There is a graph problem for which the difference in running time
between MV and SV is ∆− 1 rounds.

The thesis A Classification of Weak Models of Distributed Computing is
available at http://hdl.handle.net/10138/144214.

47 / 47

