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Distributed system

A graph, whose each node

runs the same algorithm,

can communicate with its
neighbours,

produces a local output.

2 / 47



Communication in synchronous rounds

v

←
a

b
→

In every round, each node v

1 sends messages to its neighbours,

2 receives messages from its
neighbours,

3 updates its state.

After the final round, each node
announces its own output.
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Focus on communication, not computation

∆ = 3
n = 6

The running time of an algorithm is
the number of communications
rounds.

The running time may depend on

the maximum degree of the
graph, ∆,

the number of nodes, n.
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Port numbering

A port of a graph G = (V ,E ) is a pair (v , i), where v ∈ V and
i ∈ {1, 2, . . . , deg(v)}. Let P(G ) be the set of all ports of G . A port
numbering of G is a bijection p : P(G )→ P(G ) such that

p(v , i) = (u, j) for some i and j if and only if {v , u} ∈ E .

u

v

2

1

3

2

w

2

2

1

1

Intuitively, if p(v , i) = (u, j), then (v , i) is an
output port of node v that is connected to an
input port (u, j) of node u.

p(u, 2) = (v , 3),

p(v , 2) = (u, 1),

p(u, 1) = (w , 1),

...
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Consistent port numbering

We say that a port numbering p is consistent if we have

p(p(v , i)) = (v , i) for all (v , i) ∈ P(G ),

or, in other words, if the input port and the output port connected to the
same neighbour always have the same number.

u

v

2

1

2

1

w

3

2

3

2

p(u, 1) = (v , 2),

p(v , 2) = (u, 1),

p(u, 2) = (w , 3),

p(w , 3) = (u, 2),

...
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Bounded-degree graphs and local inputs

For each positive integer ∆, denote by F(∆) the class of all simple
undirected graphs of maximum degree at most ∆.

An input for a graph G = (V ,E ) is a function f : V → X , where X 3 ∅ is a
finite set. For each v ∈ V , the value f (v) is called the local input of v .

The symbol ∅ ∈ X is used to indicate “no input”.

7 / 47



Bounded-degree graphs and local inputs

For each positive integer ∆, denote by F(∆) the class of all simple
undirected graphs of maximum degree at most ∆.

An input for a graph G = (V ,E ) is a function f : V → X , where X 3 ∅ is a
finite set. For each v ∈ V , the value f (v) is called the local input of v .

The symbol ∅ ∈ X is used to indicate “no input”.

7 / 47



Algorithms as state machines

Let ∆ ∈ N+ and let X be a set of local inputs. A distributed state machine
for (F(∆),X ) is a tuple A = (Y ,Z , σ0,M, µ, σ), where

Y is a set of states,

Z ⊆ Y is a finite set of stopping states,

σ0 : {0, 1, . . . ,∆} × X → Y is a function that defines the initial state,

M is a set of messages such that ε ∈ M,

µ : Y × [∆]→ M is a function that constructs the outgoing messages,
such that µ(z , i) = ε for all z ∈ Z and i ∈ [∆],

σ : Y ×M∆ → Y is a function that defines the state transitions, such
that σ(z ,m) = z for all z ∈ Z and m ∈ M∆.

The special symbol ε ∈ M indicates “no message”.
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Execution

Let G = (V ,E ) ∈ F(∆), let p be a port numbering of G , let f : V → X ,
and let A be a distributed state machine for (F(∆),X ).

The state of the system in round r ∈ N is a function xr : V → Y , where
xr (v) is the state of node v in round r . To initialise the nodes, set

x0(v) = σ0(deg(v), f (v)) for each v ∈ V .

Then, assume that xr is defined for some r ∈ N. Let (u, j) ∈ P(G ) and
(v , i) = p(u, j). Now, node v receives the message

ar+1(v , i) = µ(xr (u), j)

from its port (v , i) in round r + 1. For each v ∈ V , we define

ar+1(v) = (ar+1(v , 1), ar+1(v , 2), . . . , ar+1(v , deg(v)), ε, ε, . . . , ε) ∈ M∆.

Now we can define the new state of each node v ∈ V as follows:

xr+1(v) = σ(xr (v), ar+1(v)).

9 / 47



Execution

Let G = (V ,E ) ∈ F(∆), let p be a port numbering of G , let f : V → X ,
and let A be a distributed state machine for (F(∆),X ).

The state of the system in round r ∈ N is a function xr : V → Y , where
xr (v) is the state of node v in round r . To initialise the nodes, set

x0(v) = σ0(deg(v), f (v)) for each v ∈ V .

Then, assume that xr is defined for some r ∈ N. Let (u, j) ∈ P(G ) and
(v , i) = p(u, j). Now, node v receives the message

ar+1(v , i) = µ(xr (u), j)

from its port (v , i) in round r + 1. For each v ∈ V , we define

ar+1(v) = (ar+1(v , 1), ar+1(v , 2), . . . , ar+1(v , deg(v)), ε, ε, . . . , ε) ∈ M∆.

Now we can define the new state of each node v ∈ V as follows:

xr+1(v) = σ(xr (v), ar+1(v)).

9 / 47



Running time

Let t ∈ N. If xt(v) ∈ Z for all v ∈ V , we say that A stops in time t in
(G , f , p).

The running time of A in (G , f , p) is the smallest t for which this holds.

If A stops in time t in (G , f , p), the output of A in (G , f , p) is xt : V → Y .

For each v ∈ V , the local output of v is xt(v).
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Graph problems

We study graph problems where

problem instance is the communication graph (and the possible local
inputs),

the local outputs together define a solution.

Let X and Y be finite nonempty sets.

A graph problem is a function ΠX ,Y that maps each undirected simple
graph G = (V ,E ) and each input f : V → X to a set ΠX ,Y (G , f ) of
solutions.

Each solution S ∈ ΠX ,Y (G , f ) is a function S : V → Y .
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Solving a graph problem

Let ΠX ,Y be a graph problem, T : N× N→ N and A = (A1,A2, . . . ) such
that each A∆ is a distributed state machine for (F(∆),X ). Algorithm A
solves ΠX ,Y in time T if the following holds for all ∆ ∈ N, all finite
graphs G = (V ,E ) ∈ F(∆), all inputs f : V → X and all port
numberings p of G :

1 A∆ stops in time T (∆, |V |) in (G , f , p).

2 The output of A∆ in (G , f , p) is in ΠX ,Y (G , f ).

We say that A solves ΠX ,Y in time T assuming consistency if the above
holds for all consistent port numberings p of G .

If T (∆, n) does not depend on n, we say that A solves ΠX ,Y in constant
time or that A is a local algorithm for ΠX ,Y .
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Graph problems

Often the solution S : V → Y is an
encoding of a subset of vertices or
edges of the graph.

Example problems:

minimum vertex cover,

maximal matching.
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Variants of the model of computation

VV is the class of all distributed state machines (send a vector, receive a
vector).

We can place different restrictions on the algorithms:

VB: broadcast the same message to all neighbours:

µ(y , i) = µ(y , j) for all i , j ∈ {1, 2, . . . ,∆} and y ∈ Y ,

MV: receive a multiset of messages:

multiset(a) = multiset(b)⇒ σ(y , a) = σ(y , b) for all y ∈ Y ,

SV: receive a set of messages:

set(a) = set(b)⇒ σ(y , a) = σ(y , b) for all y ∈ Y ,

MB =MV ∩ VB and SB = SV ∩ VB.

14 / 47



Variants of the model of computation

VV is the class of all distributed state machines (send a vector, receive a
vector).

We can place different restrictions on the algorithms:

VB: broadcast the same message to all neighbours:

µ(y , i) = µ(y , j) for all i , j ∈ {1, 2, . . . ,∆} and y ∈ Y ,

MV: receive a multiset of messages:

multiset(a) = multiset(b)⇒ σ(y , a) = σ(y , b) for all y ∈ Y ,

SV: receive a set of messages:

set(a) = set(b)⇒ σ(y , a) = σ(y , b) for all y ∈ Y ,

MB =MV ∩ VB and SB = SV ∩ VB.

14 / 47



Variants of the model of computation

VV is the class of all distributed state machines (send a vector, receive a
vector).

We can place different restrictions on the algorithms:

VB: broadcast the same message to all neighbours:

µ(y , i) = µ(y , j) for all i , j ∈ {1, 2, . . . ,∆} and y ∈ Y ,

MV: receive a multiset of messages:

multiset(a) = multiset(b)⇒ σ(y , a) = σ(y , b) for all y ∈ Y ,

SV: receive a set of messages:

set(a) = set(b)⇒ σ(y , a) = σ(y , b) for all y ∈ Y ,

MB =MV ∩ VB and SB = SV ∩ VB.
14 / 47



Variants of the model of computation

VV = {(A1,A2, . . . ) : A∆ ∈ VV for all ∆},
MV = {(A1,A2, . . . ) : A∆ ∈MV for all ∆},
SV = {(A1,A2, . . . ) : A∆ ∈ SV for all ∆},
VB = {(A1,A2, . . . ) : A∆ ∈ VB for all ∆},
MB = {(A1,A2, . . . ) : A∆ ∈MB for all ∆},
SB = {(A1,A2, . . . ) : A∆ ∈ SB for all ∆}.
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Complexity classes

Let P be the class of all graph problems.

VVc = {Π ∈ P : there is A ∈ VV that solves Π assuming consistency},
VV = {Π ∈ P : there is A ∈ VV that solves Π},
MV = {Π ∈ P : there is A ∈MV that solves Π},
SV = {Π ∈ P : there is A ∈ SV that solves Π},
VB = {Π ∈ P : there is A ∈ VB that solves Π},
MB = {Π ∈ P : there is A ∈MB that solves Π},
SB = {Π ∈ P : there is A ∈ SB that solves Π}.
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Containment relations between the classes

VVc

VV

MV

SV

VB

MB

SB

Trivial relations:

SV ⊆ MV ⊆ VV ⊆ VVc,

SB ⊆ MB ⊆ VB,

VB ⊆ VV,

MB ⊆ MV,

SB ⊆ SV.

Non-trivial: SV ⊆ VB? VB ⊆ SV?
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Containment relations between the classes

VVc

VV

6=

MV

=

SV

=

VB

MB

=

SB

6=

6=

Hella, Järvisalo, Kuusisto, Laurinharju, L.,
Luosto, Suomela, Virtema (PODC 2012):

SB ( MB = VB ( SV = MV = VV ( VVc.
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Simulation results

VVc

VV

6=

MV

=

SV

=

VB

MB

=

SB

6=

6=

Equalities are proved by showing that
seemingly more powerful algorithms can be
simulated by seemingly weaker algorithms.

MV = VV and MB = VB: the
simulation does not increase running
time.

SV = MV: the running time increases by
2∆− 2 rounds.
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New contributions

VVc

VV

6=

MV

=

SV

=

VB

MB

=

SB

6=

6=

SV = MV: the running time increases by
2∆− 2 rounds.

Question: Is the overhead of 2∆− 2 rounds
optimal?

Answer: Yes

A so-called simulation problem requires
exactly 2∆− 2 rounds.

In the case of graph problems, a
linear-in-∆ overhead is necessary.
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The relationship of MV and SV

Trivially SV ⊆ MV.

Hella, Järvisalo, Kuusisto, Laurinharju, L., Luosto, Suomela, Virtema
(PODC 2012):

Theorem

Let Π be a graph problem and let T : N× N→ N. Assume that there is an
algorithm A ∈MV that solves Π in time T . Then there is an algorithm
B ∈ SV that solves Π in time T ′, where T ′(n,∆) = T (n,∆) + 2∆− 2.

It follows that SV = MV.
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Idea behind the simulation theorem

First, solve the following simulation problem by an SV-algorithm:

u

v
p1

w
p2

If p1 = p2, then
output(v) 6= output(w).

Now the pair

(output, port number)

is distinct for each neighbour.

This takes 2∆− 2 communication rounds.

Then, simulate the MV-algorithm by attaching the above pair to each
message. That way we can reconstruct the message multiplicities.
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The new results: lower bounds for the simulation

Is the overhead of 2∆− 2 rounds really needed to reconstruct the message
multiplicities by an SV-algorithm?

Theorem

For each ∆ ≥ 2 there is a graph G = (V ,E ) ∈ F(∆), a port numbering p
of G and nodes v , u,w ∈ V such that when executing any
algorithm A ∈ SV in (G , p), node v receives identical messages from its
neighbours u and w in rounds 1, 2, . . . , 2∆− 2.

Theorem

There is a graph problem Π that can be solved in one round by an algorithm
in MV but that requires at least time T , where T (n,∆) ≥ ∆ for all ∆ ≥ 2,
when solved by an algorithm in SV.
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Example: a problem instance separating SV and MV

u
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3
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1

21
3

1
3

v

1

1

1

3

1

2

2

2

1

2

1

21
3

Output 1 if there is an even number of neighbours of even degree, 0
otherwise.
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Lower-bound construction for the simulation problem
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Proof idea

1 Investigate walks that start from the blue nodes and follow an identical
sequence of port numbers.

1 In which cases we cannot extend the walks in a consistent manner?
2 What is the length of such maximal walks?

2 Prove a lower bound for the length of the walks.

3 Show that the lower bound on walks implies bisimilarity of the blue
nodes up to a certain distance.

4 Bisimilarity entails a lower bound for the running time of any
distributed algorithm that is able to distinguish the nodes.
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Notation for outgoing port numbers

If p(v , i) = (u, j), we write π(v , u) = i . That is, π(v , u) is the number of
the output port of v that is connected to u.
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Definition of the graph Gd

1 ∅ ∈ Vd .
2 ((1, 0)), ((2, 1)), ((3, 2)), ((4, 3)), . . . , ((d , d − 1)) ∈ Vd .
3 If (a1, a2, . . . , ai ) ∈ Vd , where i is odd and i < 2d , then

(a1, a2, . . . , a
j
i+1) ∈ Vd for all j = 1, 2, . . . , d − 1, where aji+1 = (c j

1, c
j
2)

is defined as follows. Let (b1, b2) = ai and b+
2 = 1 if b2 = 0, b+

2 = b2

otherwise. Define

c j
1 = min({1, 2, . . . , d} \ {b+

2 , c
1
1 , c

2
1 , . . . , c

j−1
1 }),

c j
2 = min({1, 2, . . . , d} \ {b1, c

1
2 , c

2
2 , . . . , c

j−1
2 }).

4 If (a1, a2, . . . , ai ) ∈ Vd , where i is even and 0 < i < 2d , then
(a1, a2, . . . , a

j
i+1) ∈ Vd for all j = 1, 2, . . . , d − 1, where aji+1 = (c j

1, c
j
2)

is defined as follows. Let (b1, b2) = ai . Define

c j
1 = min({1, 2, . . . , d} \ {b2, c

1
1 , c

2
1 , . . . , c

j−1
1 }),

c j
2 = min({0, 1, . . . , d − 1} \ {b1, c

1
2 , c

2
2 , . . . , c

j−1
2 }).
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Graph Gd for d = 4
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Definition of the graph Gd

The set Ed of edges consists of all pairs {v , u}, where
v = (a1, a2, . . . , ai ) ∈ Vd and u = (a1, a2, . . . , ai , ai+1) ∈ Vd for some
i ∈ {0, 1, . . .}.

If v = (a1, a2, . . . , ai ) and u = (a1, a2, . . . , ai+1), where ai+1 = (b1, b2), the
outgoing port number from v to u is πd(v , u) = b1 and the outgoing port
number from u to v is πd(u, v) = b2.
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Pairs of separating walks (PSWs)

A walk is a sequence v = (v0, v1, . . . , vk) of nodes such that {vi , vi+1} ∈ Ed

for all i = 0, 1, . . . , k − 1.

A pair (v 1, v 2) of walks, where v i = (v i
0, v

i
1, . . . , v

i
k) for all i = 1, 2, is called

a pair of separating walks (PSW) of length k in Gd if the following
conditions hold:

1 v 1
0 = ((1, 0)) and v 2

0 = ((2, 1)).

2 πd(v 1
j , v

1
j−1) = πd(v 2

j , v
2
j−1) for all j = 1, 2, . . . , k.

3 There is v 1
k+1 ∈ Vd with {v 1

k , v
1
k+1} ∈ Ed such that there is no

v 2
k+1 ∈ Vd for which {v 2

k , v
2
k+1} ∈ Ed and

πd(v 1
k+1, v

1
k ) = πd(v 2

k+1, v
2
k ).

We say that a pair of separating walks of length k in Gd is critical if there
does not exist a pair of separating walks of length k ′ in Gd for any k ′ < k.
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A pair of separating walks in G4
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How to prove that two nodes stay in the same state?

Definition

Let G = (V ,E ) and G ′ = (V ′,E ′) be graphs, let f and f ′ be inputs for G
and G ′, respectively, and let p and p′ be port numberings of G and G ′,
respectively. An r -SV-bisimulation between nodes v ∈ V and v ′ ∈ V ′ is a
sequence of binary relations Br ⊆ Br−1 ⊆ · · · ⊆ B0 ⊆ V × V ′ such that the
following conditions hold for 1 ≤ i ≤ r :

1 (v , v ′) ∈ Br .

2 If (u, u′) ∈ B0, then degG (u) = degG ′(u′) and f (u) = f ′(u′).

3 If (u, u′) ∈ Bi and {u,w} ∈ E , then there is w ′ ∈ V ′ such that
{u′,w ′} ∈ E ′, (w ,w ′) ∈ Bi−1 and π(w , u) = π′(w ′, u′).

4 If (u, u′) ∈ Bi and {u′,w ′} ∈ E ′, then there is w ∈ V such that
{u,w} ∈ E , (w ,w ′) ∈ Bi−1 and π(w , u) = π′(w ′, u′).
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How to prove that two nodes stay in the same state?

We say that v ∈ V and v ′ ∈ V ′ are r -SV-bisimilar and write
(G , f , v , p)↔SVr (G ′, f ′, v ′, p′) (or simply v ↔SVr v ′) if there exists an
r -SV-bisimulation between them.

Lemma

Let G = (V ,E ) and G ′ = (V ′,E ′) be graphs, let f and f ′ be inputs for G
and G ′, respectively, and let p and p′ be port numberings of G and G ′,
respectively. If (G , f , v , p)↔SVr (G ′, f ′, v ′, p′) for some r ∈ N, v ∈ V and
v ′ ∈ V ′, then for all algorithms A ∈ SV we have xt(v) = x ′t(v ′) for all
t = 0, 1, . . . , r , that is, the state of v and v ′ is identical in rounds 0, 1, . . . , r .
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Bisimilarity

Lemma

The r-SV-bisimilarity relation ↔SVr is an equivalence relation in the class
of quadruples (G , f , v , p), where G = (V ,E ) is a graph, f is an input for G ,
p is a port numbering of G and v ∈ V .

Lemma

Let G = (V ,E ) and G ′ = (V ′,E ′) be graphs, let f and f ′ be inputs for G
and G ′, respectively, let p and p′ be port numberings of G and G ′,
respectively, and let v ∈ V , v ′ ∈ V ′. Then (G , f , v , p)↔SVr (G ′, f ′, v ′, p′)
iff the following conditions hold:

1 (G , f , v , p)↔SVr−1 (G ′, f ′, v ′, p′).

2 If {v ,w} ∈ E, then there is w ′ ∈ V ′ such that {v ′,w ′} ∈ E ′,
(G , f ,w , p)↔SVr−1 (G ′, f ′,w ′, p′) and π(w , v) = π′(w ′, v ′).

3 If {v ′,w ′} ∈ E ′, then there is w ∈ V such that {v ,w} ∈ E,
(G , f ,w , p)↔SVr−1 (G ′, f ′,w ′, p′) and π(w , v) = π′(w ′, v ′).
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Definitions

If v = (a1, a2, . . . , ai ) and u = (a1, a2, . . . , ai+1), we say that node v is the
parent of node u and that u is a child of v .

We say that the node v is even if i is even and odd if i is odd.

If ai = (b1, b2), we call (b1, b2) the type of node v .
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Easy observations

Lemma

For each d, we have deg(v) ∈ {1, d} for all v ∈ Vd , and thus Gd ∈ F(d).
Additionally, Gd is a subgraph of Gd+1.

Lemma

Let v ∈ Vd and a ∈ {0, 1, . . . , d}. Then there is at most one node u ∈ Vd

such that {v , u} ∈ Ed and πd(u, v) = a.
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Easy observations

Lemma

Let v = (a1, a2, . . . , ai ) ∈ Vd , where i < 2d. If v is odd, then for all
a ∈ {1, 2, . . . , d} there exists u ∈ Vd such that {v , u} ∈ Ed and
πd(u, v) = a. If v is even, then either for all a ∈ {0, 1, . . . , d − 1} or for all
a ∈ {0, 1, . . . , d − 2, d} there exists u ∈ Vd such that {v , u} ∈ Ed and
πd(u, v) = a. In the case of even v and a = d, node u is the parent of
node v.

Lemma

Let {v , u} ∈ Ed+1 \ Ed be such that v ∈ Vd . Then u is a child of v . If v is
odd, then πd+1(v , u) = πd+1(u, v) = d + 1. If v is even, then
πd+1(v , u) = d + 1 and πd+1(u, v) ∈ {d − 1, d}.
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Walks in isomorphic subtrees

Lemma

Let (v 1, v 2), where v i = (v i
0, v

i
1, . . . , v

i
k) for some k ≤ 2d − 3 and all

i = 1, 2, be a PSW in Gd . If for some ` ∈ {0, 1, . . . , k − 1} the node v i
`+1 is

a child of node v i
` for all i = 1, 2, and we have πd(v 1

` , v
1
`+1) = πd(v 2

` , v
2
`+1),

then (v 1, v 2) is not a critical PSW in Gd .
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Extending a PSW

Lemma

Let (v 1, v 2) be a PSW of length k ≤ 2d − 3 in Gd . Then there is a PSW of
length k + 2 in Gd+1.
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Second-to-last node is in Vd \ Vd−1

Lemma

Let (v 1, v 2), where v i = (v i
0, v

i
1, . . . , v

i
k) for some k ≤ 2d − 3 and all

i = 1, 2, be a critical PSW in Gd . Then we have v i
k−1 ∈ Vd \Vd−1 for some

i ∈ {1, 2}.
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Pair of walks that is not a PSW

Lemma

Let (v 1, v 2), where v i = (v i
0, v

i
1, . . . , v

i
k) for some k ≤ 2d − 3 and all

i = 1, 2, be a pair of walks in Gd such that conditions (1) and (2) hold. If
(v 1, v 2) is not a PSW in Gd , then for each neighbour v 1

k+1 ∈ Vd of v 1
k there

is a neighbour v 2
k+1 ∈ Vd of v 2

k such that πd(v 1
k+1, v

1
k ) = πd(v 2

k+1, v
2
k ), and

vice versa.
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The main lemma

Lemma

Let (v 1, v 2), where v i = (v i
0, v

i
1, . . . , v

i
k) for some k ≤ 2d − 3 and all

i = 1, 2, be a critical PSW in Gd . Then (v ′1, v
′
2), where

v ′i = (v i
0, v

i
1, . . . , v

i
k−2) for all i = 1, 2, is a PSW in Gd−1.
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Minimum length of a PSW and bisimilarity

Lemma

Let (v 1, v 2) be a PSW of length k ≤ 2d − 3 in Gd . Then k ≥ 2d − 3.

Lemma

We have ((1, 0))↔SV2d−3 ((2, 1)), that is, the nodes ((1, 0)) and ((2, 1)) of
Gd are (2d − 3)-SV-bisimilar.
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Separation by a graph problem
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Connections to modal logic

Hella et al. (PODC 2012):

Logical characterisations for constant-time variants of the problem
classes

In a certain class of structures, SV corresponds to multimodal logic

. . . and MV corresponds to graded multimodal logic.

Our result: When given a formula φ of graded multimodal logic, we
can find an equivalent formula ψ of multimodal logic, but in general,
the modal depth md(ψ) of ψ has to be at least md(φ) + ∆− 1.
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Conclusion

MV: Send a vector, receive a multiset.

SV: Send a vector, receive a set.

Previously:

It is possible to simulate MV in SV by using 2∆− 2 extra rounds.

This work:

2∆− 2 rounds are necessary to solve the simulation problem.

There is a graph problem for which the difference in running time
between MV and SV is ∆− 1 rounds.

The thesis A Classification of Weak Models of Distributed Computing is
available at http://hdl.handle.net/10138/144214.
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