A tight lower bound for simulating multiset model by set model in distributed computing

Tuomo Lempiäinen

Department of Computer Science, Aalto University

Finite model theory seminar, University of Helsinki, 20th February 2015

Distributed system

- A graph, whose each node
 - runs the same algorithm,
 - can communicate with its neighbours,
 - produces a local output.

In every round, each node v

sends messages to its neighbours,

- receives messages from its neighbours,
- updates its state.

In every round, each node v

- sends messages to its neighbours,
- receives messages from its neighbours,
- updates its state.

In every round, each node v

- sends messages to its neighbours,
- receives messages from its neighbours,
- updates its state.

In every round, each node v

- sends messages to its neighbours,
- receives messages from its neighbours,
- updates its state.

After the final round, each node announces its own output.

Focus on communication, not computation

The running time of an algorithm is the *number of communications rounds*.

The running time may depend on

- the maximum degree of the graph, Δ ,
- the number of nodes, n.

Port numbering

A port of a graph G = (V, E) is a pair (v, i), where $v \in V$ and $i \in \{1, 2, ..., \deg(v)\}$. Let P(G) be the set of all ports of G. A port numbering of G is a bijection $p: P(G) \rightarrow P(G)$ such that

p(v,i) = (u,j) for some *i* and *j* if and only if $\{v, u\} \in E$.

Intuitively, if p(v, i) = (u, j), then (v, i) is an output port of node v that is connected to an input port (u, j) of node u.

We say that a port numbering p is *consistent* if we have

$$p(p(v,i)) = (v,i)$$
 for all $(v,i) \in P(G)$,

or, in other words, if the input port and the output port connected to the same neighbour always have the same number.

$$p(u, 1) = (v, 2),$$

$$p(v, 2) = (u, 1),$$

$$p(u, 2) = (w, 3),$$

$$p(w, 3) = (u, 2),$$

For each positive integer Δ , denote by $\mathcal{F}(\Delta)$ the class of all simple undirected graphs of maximum degree at most Δ .

For each positive integer Δ , denote by $\mathcal{F}(\Delta)$ the class of all simple undirected graphs of maximum degree at most Δ .

An *input* for a graph G = (V, E) is a function $f: V \to X$, where $X \ni \emptyset$ is a finite set. For each $v \in V$, the value f(v) is called the *local input* of v.

The symbol $\emptyset \in X$ is used to indicate "no input".

Algorithms as state machines

Let $\Delta \in \mathbb{N}_+$ and let X be a set of local inputs. A *distributed state machine* for $(\mathcal{F}(\Delta), X)$ is a tuple $\mathcal{A} = (Y, Z, \sigma_0, M, \mu, \sigma)$, where

- Y is a set of states,
- $Z \subseteq Y$ is a finite set of stopping states,
- $\sigma_0 \colon \{0, 1, \dots, \Delta\} \times X \to Y$ is a function that defines the initial state,
- M is a set of messages such that $\epsilon \in M$,
- μ: Y × [Δ] → M is a function that constructs the outgoing messages, such that μ(z, i) = ε for all z ∈ Z and i ∈ [Δ],
- $\sigma: Y \times M^{\Delta} \to Y$ is a function that defines the state transitions, such that $\sigma(z, \overline{m}) = z$ for all $z \in Z$ and $\overline{m} \in M^{\Delta}$.

The special symbol $\epsilon \in M$ indicates "no message".

Execution

Let $G = (V, E) \in \mathcal{F}(\Delta)$, let p be a port numbering of G, let $f : V \to X$, and let \mathcal{A} be a distributed state machine for $(\mathcal{F}(\Delta), X)$.

The state of the system in round $r \in \mathbb{N}$ is a function $x_r \colon V \to Y$, where $x_r(v)$ is the *state* of node v in round r. To initialise the nodes, set

 $x_0(v) = \sigma_0(\deg(v), f(v))$ for each $v \in V$.

Execution

Let $G = (V, E) \in \mathcal{F}(\Delta)$, let p be a port numbering of G, let $f : V \to X$, and let \mathcal{A} be a distributed state machine for $(\mathcal{F}(\Delta), X)$.

The state of the system in round $r \in \mathbb{N}$ is a function $x_r \colon V \to Y$, where $x_r(v)$ is the *state* of node v in round r. To initialise the nodes, set

$$x_0(v) = \sigma_0(\deg(v), f(v))$$
 for each $v \in V$.

Then, assume that x_r is defined for some $r \in \mathbb{N}$. Let $(u, j) \in P(G)$ and (v, i) = p(u, j). Now, node v receives the message

$$a_{r+1}(v,i) = \mu(x_r(u),j)$$

from its port (v, i) in round r + 1. For each $v \in V$, we define

$$\overline{a}_{r+1}(v) = (a_{r+1}(v,1), a_{r+1}(v,2), \dots, a_{r+1}(v, \deg(v)), \epsilon, \epsilon, \dots, \epsilon) \in M^{\Delta}$$

Now we can define the new state of each node $v \in V$ as follows:

$$x_{r+1}(v) = \sigma(x_r(v), \overline{a}_{r+1}(v)).$$

Let $t \in \mathbb{N}$. If $x_t(v) \in Z$ for all $v \in V$, we say that \mathcal{A} stops in time t in (G, f, p).

The running time of A in (G, f, p) is the smallest t for which this holds.

If \mathcal{A} stops in time t in (G, f, p), the *output* of \mathcal{A} in (G, f, p) is $x_t \colon V \to Y$.

For each $v \in V$, the *local output* of v is $x_t(v)$.

We study graph problems where

- problem instance is the communication graph (and the possible local inputs),
- the local outputs together define a solution.

We study graph problems where

- problem instance is the communication graph (and the possible local inputs),
- the local outputs together define a solution.

Let X and Y be finite nonempty sets.

A graph problem is a function $\Pi_{X,Y}$ that maps each undirected simple graph G = (V, E) and each input $f \colon V \to X$ to a set $\Pi_{X,Y}(G, f)$ of solutions.

Each solution $S \in \Pi_{X,Y}(G, f)$ is a function $S \colon V \to Y$.

Solving a graph problem

Let $\Pi_{X,Y}$ be a graph problem, $T : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ and $\mathbf{A} = (\mathcal{A}_1, \mathcal{A}_2, ...)$ such that each \mathcal{A}_Δ is a distributed state machine for $(\mathcal{F}(\Delta), X)$. Algorithm \mathbf{A} solves $\Pi_{X,Y}$ in time T if the following holds for all $\Delta \in \mathbb{N}$, all finite graphs $G = (V, E) \in \mathcal{F}(\Delta)$, all inputs $f : V \to X$ and all port numberings p of G:

- \mathcal{A}_{Δ} stops in time $T(\Delta, |V|)$ in (G, f, p).
- **2** The output of \mathcal{A}_{Δ} in (G, f, p) is in $\Pi_{X,Y}(G, f)$.

Solving a graph problem

Let $\Pi_{X,Y}$ be a graph problem, $T : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ and $\mathbf{A} = (\mathcal{A}_1, \mathcal{A}_2, ...)$ such that each \mathcal{A}_Δ is a distributed state machine for $(\mathcal{F}(\Delta), X)$. Algorithm \mathbf{A} solves $\Pi_{X,Y}$ in time T if the following holds for all $\Delta \in \mathbb{N}$, all finite graphs $G = (V, E) \in \mathcal{F}(\Delta)$, all inputs $f : V \to X$ and all port numberings p of G:

- \mathcal{A}_{Δ} stops in time $T(\Delta, |V|)$ in (G, f, p).
- **2** The output of \mathcal{A}_{Δ} in (G, f, p) is in $\Pi_{X,Y}(G, f)$.

We say that **A** solves $\Pi_{X,Y}$ in time *T* assuming consistency if the above holds for all consistent port numberings *p* of *G*.

If $T(\Delta, n)$ does not depend on n, we say that **A** solves $\Pi_{X,Y}$ in constant time or that **A** is a local algorithm for $\Pi_{X,Y}$.

Often the solution $S: V \rightarrow Y$ is an encoding of a subset of vertices or edges of the graph.

Often the solution $S: V \rightarrow Y$ is an encoding of a subset of vertices or edges of the graph.

Example problems:

• minimum vertex cover,

Often the solution $S: V \rightarrow Y$ is an encoding of a subset of vertices or edges of the graph.

Example problems:

- minimum vertex cover,
- maximal matching.

 $\mathcal{V}\mathcal{V}$ is the class of all distributed state machines (send a vector, receive a vector).

We can place different restrictions on the algorithms:

 $\bullet \ \mathcal{VB}:$ broadcast the same message to all neighbours:

$$\mu(y,i)=\mu(y,j)$$
 for all $i,j\in\{1,2,\ldots,\Delta\}$ and $y\in Y,$

 $\mathcal{V}\mathcal{V}$ is the class of all distributed state machines (send a vector, receive a vector).

We can place different restrictions on the algorithms:

 $\bullet \ \mathcal{VB}$: broadcast the same message to all neighbours:

$$\mu(y,i)=\mu(y,j)$$
 for all $i,j\in\{1,2,\ldots,\Delta\}$ and $y\in Y,$

• \mathcal{MV} : receive a multiset of messages:

 $\mathsf{multiset}(\overline{a}) = \mathsf{multiset}(\overline{b}) \Rightarrow \sigma(y, \overline{a}) = \sigma(y, \overline{b}) \text{ for all } y \in Y,$

• \mathcal{SV} : receive a set of messages:

$$\operatorname{set}(\overline{a}) = \operatorname{set}(\overline{b}) \Rightarrow \sigma(y, \overline{a}) = \sigma(y, \overline{b}) \text{ for all } y \in Y,$$

 $\mathcal{V}\mathcal{V}$ is the class of all distributed state machines (send a vector, receive a vector).

We can place different restrictions on the algorithms:

 $\bullet \ \mathcal{VB}$: broadcast the same message to all neighbours:

$$\mu(y,i)=\mu(y,j)$$
 for all $i,j\in\{1,2,\ldots,\Delta\}$ and $y\in Y,$

• \mathcal{MV} : receive a multiset of messages:

 $\mathsf{multiset}(\overline{a}) = \mathsf{multiset}(\overline{b}) \Rightarrow \sigma(y, \overline{a}) = \sigma(y, \overline{b}) \text{ for all } y \in Y,$

• \mathcal{SV} : receive a set of messages:

$$\operatorname{set}(\overline{a}) = \operatorname{set}(\overline{b}) \Rightarrow \sigma(y, \overline{a}) = \sigma(y, \overline{b}) \text{ for all } y \in Y,$$

•
$$\mathcal{MB} = \mathcal{MV} \cap \mathcal{VB}$$
 and $\mathcal{SB} = \mathcal{SV} \cap \mathcal{VB}$.

$$\begin{split} \mathbf{VV} &= \{ (\mathcal{A}_1, \mathcal{A}_2, \dots) : \mathcal{A}_\Delta \in \mathcal{VV} \text{ for all } \Delta \}, \\ \mathbf{MV} &= \{ (\mathcal{A}_1, \mathcal{A}_2, \dots) : \mathcal{A}_\Delta \in \mathcal{MV} \text{ for all } \Delta \}, \\ \mathbf{SV} &= \{ (\mathcal{A}_1, \mathcal{A}_2, \dots) : \mathcal{A}_\Delta \in \mathcal{SV} \text{ for all } \Delta \}, \\ \mathbf{VB} &= \{ (\mathcal{A}_1, \mathcal{A}_2, \dots) : \mathcal{A}_\Delta \in \mathcal{VB} \text{ for all } \Delta \}, \\ \mathbf{MB} &= \{ (\mathcal{A}_1, \mathcal{A}_2, \dots) : \mathcal{A}_\Delta \in \mathcal{MB} \text{ for all } \Delta \}, \\ \mathbf{SB} &= \{ (\mathcal{A}_1, \mathcal{A}_2, \dots) : \mathcal{A}_\Delta \in \mathcal{SB} \text{ for all } \Delta \}. \end{split}$$

Let P be the class of all graph problems.

$$\begin{split} VV_c &= \{\Pi \in P \ : \ \text{there is } \textbf{A} \in \textbf{VV} \ \text{that solves } \Pi \ \text{assuming consistency} \}, \\ VV &= \{\Pi \in P \ : \ \text{there is } \textbf{A} \in \textbf{VV} \ \text{that solves } \Pi \}, \\ MV &= \{\Pi \in P \ : \ \text{there is } \textbf{A} \in \textbf{MV} \ \text{that solves } \Pi \}, \\ SV &= \{\Pi \in P \ : \ \text{there is } \textbf{A} \in \textbf{SV} \ \text{that solves } \Pi \}, \\ VB &= \{\Pi \in P \ : \ \text{there is } \textbf{A} \in \textbf{VB} \ \text{that solves } \Pi \}, \\ MB &= \{\Pi \in P \ : \ \text{there is } \textbf{A} \in \textbf{MB} \ \text{that solves } \Pi \}, \\ SB &= \{\Pi \in P \ : \ \text{there is } \textbf{A} \in \textbf{SB} \ \text{that solves } \Pi \}. \end{split}$$

Containment relations between the classes

Trivial relations:

- $\bullet \ \mathsf{SV} \subseteq \mathsf{MV} \subseteq \mathsf{VV} \subseteq \mathsf{VV}_{\mathsf{c}}\text{,}$
- $\bullet \ \mathsf{SB} \subseteq \mathsf{MB} \subseteq \mathsf{VB},$
- $VB \subseteq VV$,
- $\bullet \ \mathsf{MB} \subseteq \mathsf{MV},$
- $SB \subseteq SV$.

Non-trivial: $SV \subseteq VB$? $VB \subseteq SV$?

Containment relations between the classes

Hella, Järvisalo, Kuusisto, Laurinharju, L., Luosto, Suomela, Virtema (PODC 2012):

$$SB \subsetneq MB = VB \subsetneq SV = MV = VV \subsetneq VV_c$$
.

Simulation results

Equalities are proved by showing that seemingly more powerful algorithms can be simulated by seemingly weaker algorithms.

- MV = VV and MB = VB: the simulation does not increase running time.
- SV = MV: the running time increases by $2\Delta 2$ rounds.

New contributions

SV = MV: the running time increases by $2\Delta - 2$ rounds.

Question: Is the overhead of $2\Delta - 2$ rounds optimal?

New contributions

SV = MV: the running time increases by $2\Delta - 2$ rounds.

Question: Is the overhead of $2\Delta - 2$ rounds optimal?

Answer: Yes

- A so-called simulation problem requires exactly $2\Delta 2$ rounds.
- In the case of graph problems, a linear-in-Δ overhead is necessary.

Trivially $SV \subseteq MV$.

Hella, Järvisalo, Kuusisto, Laurinharju, L., Luosto, Suomela, Virtema (PODC 2012):

Theorem

Let Π be a graph problem and let $T : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$. Assume that there is an algorithm $\mathbf{A} \in \mathbf{MV}$ that solves Π in time T. Then there is an algorithm $\mathbf{B} \in \mathbf{SV}$ that solves Π in time T', where $T'(n, \Delta) = T(n, \Delta) + 2\Delta - 2$.

It follows that SV = MV.

Idea behind the simulation theorem

First, solve the following simulation problem by an \mathcal{SV} -algorithm:

If $p_1 = p_2$, then output(v) \neq output(w).

Now the pair

(output, port number)

is distinct for each neighbour.

This takes $2\Delta - 2$ communication rounds.

Idea behind the simulation theorem

First, solve the following simulation problem by an \mathcal{SV} -algorithm:

If $p_1 = p_2$, then output(v) \neq output(w).

Now the pair

(output, port number)

is distinct for each neighbour.

This takes $2\Delta - 2$ communication rounds.

Then, simulate the \mathcal{MV} -algorithm by attaching the above pair to each message. That way we can reconstruct the message multiplicities.

The new results: lower bounds for the simulation

Is the overhead of $2\Delta-2$ rounds really needed to reconstruct the message multiplicities by an $\mathcal{SV}\text{-algorithm}?$

Theorem

For each $\Delta \ge 2$ there is a graph $G = (V, E) \in \mathcal{F}(\Delta)$, a port numbering p of G and nodes v, u, $w \in V$ such that when executing any algorithm $\mathcal{A} \in S\mathcal{V}$ in (G, p), node v receives identical messages from its neighbours u and w in rounds $1, 2, \ldots, 2\Delta - 2$.
The new results: lower bounds for the simulation

Is the overhead of $2\Delta-2$ rounds really needed to reconstruct the message multiplicities by an $\mathcal{SV}\text{-algorithm}?$

Theorem

For each $\Delta \geq 2$ there is a graph $G = (V, E) \in \mathcal{F}(\Delta)$, a port numbering p of G and nodes v, u, $w \in V$ such that when executing any algorithm $\mathcal{A} \in S\mathcal{V}$ in (G, p), node v receives identical messages from its neighbours u and w in rounds $1, 2, \ldots, 2\Delta - 2$.

Theorem

There is a graph problem Π that can be solved in one round by an algorithm in **MV** but that requires at least time T, where $T(n, \Delta) \ge \Delta$ for all $\Delta \ge 2$, when solved by an algorithm in **SV**.

Example: a problem instance separating \mathcal{SV} and \mathcal{MV}

Output 1 if there is an even number of neighbours of even degree, 0 otherwise.

Lower-bound construction for the simulation problem

- Investigate walks that start from the blue nodes and follow an identical sequence of port numbers.
 - In which cases we cannot extend the walks in a consistent manner?
 - What is the length of such maximal walks?

- Investigate walks that start from the blue nodes and follow an identical sequence of port numbers.
 - In which cases we cannot extend the walks in a consistent manner?
 - What is the length of such maximal walks?
- Prove a lower bound for the length of the walks.

- Investigate walks that start from the blue nodes and follow an identical sequence of port numbers.
 - In which cases we cannot extend the walks in a consistent manner?
 - What is the length of such maximal walks?
- Prove a lower bound for the length of the walks.
- Show that the lower bound on walks implies bisimilarity of the blue nodes up to a certain distance.
- Bisimilarity entails a lower bound for the running time of any distributed algorithm that is able to distinguish the nodes.

If p(v, i) = (u, j), we write $\pi(v, u) = i$. That is, $\pi(v, u)$ is the number of the output port of v that is connected to u.

Definition of the graph G_d

$$egin{aligned} c_1^j &= \min(\{1,2,\ldots,d\} \setminus \{b_2^+,c_1^1,c_1^2,\ldots,c_1^{j-1}\}), \ c_2^j &= \min(\{1,2,\ldots,d\} \setminus \{b_1,c_2^1,c_2^2,\ldots,c_2^{j-1}\}). \end{aligned}$$

• If $(a_1, a_2, \ldots, a_i) \in V_d$, where *i* is even and 0 < i < 2d, then $(a_1, a_2, \ldots, a_{i+1}^j) \in V_d$ for all $j = 1, 2, \ldots, d-1$, where $a_{i+1}^j = (c_1^j, c_2^j)$ is defined as follows. Let $(b_1, b_2) = a_i$. Define

$$egin{aligned} c_1^j &= \min(\{1,2,\ldots,d\} \setminus \{b_2,c_1^1,c_1^2,\ldots,c_1^{j-1}\}), \ c_2^j &= \min(\{0,1,\ldots,d-1\} \setminus \{b_1,c_2^1,c_2^2,\ldots,c_2^{j-1}\}). \end{aligned}$$

Graph G_d for d = 4

Graph G_d for d = 4

The set E_d of edges consists of all pairs $\{v, u\}$, where $v = (a_1, a_2, \ldots, a_i) \in V_d$ and $u = (a_1, a_2, \ldots, a_i, a_{i+1}) \in V_d$ for some $i \in \{0, 1, \ldots\}$.

If $v = (a_1, a_2, ..., a_i)$ and $u = (a_1, a_2, ..., a_{i+1})$, where $a_{i+1} = (b_1, b_2)$, the outgoing port number from v to u is $\pi_d(v, u) = b_1$ and the outgoing port number from u to v is $\pi_d(u, v) = b_2$.

Pairs of separating walks (PSWs)

A walk is a sequence $\overline{v} = (v_0, v_1, \dots, v_k)$ of nodes such that $\{v_i, v_{i+1}\} \in E_d$ for all $i = 0, 1, \dots, k - 1$.

A pair $(\overline{v}_1, \overline{v}_2)$ of walks, where $\overline{v}_i = (v_0^i, v_1^i, \dots, v_k^i)$ for all i = 1, 2, is called a *pair of separating walks (PSW) of length k in G_d* if the following conditions hold:

•
$$v_0^1 = ((1,0)) \text{ and } v_0^2 = ((2,1)).$$

• $\pi_d(v_j^1, v_{j-1}^1) = \pi_d(v_j^2, v_{j-1}^2) \text{ for all } j = 1, 2, \ldots, k.$

• There is $v_{k+1}^1 \in V_d$ with $\{v_k^1, v_{k+1}^1\} \in E_d$ such that there is no $v_{k+1}^2 \in V_d$ for which $\{v_k^2, v_{k+1}^2\} \in E_d$ and $\pi_d(v_{k+1}^1, v_k^1) = \pi_d(v_{k+1}^2, v_k^2).$

We say that a pair of separating walks of length k in G_d is critical if there does not exist a pair of separating walks of length k' in G_d for any k' < k.

Definition

Let G = (V, E) and G' = (V', E') be graphs, let f and f' be inputs for Gand G', respectively, and let p and p' be port numberings of G and G', respectively. An r-SV-bisimulation between nodes $v \in V$ and $v' \in V'$ is a sequence of binary relations $B_r \subseteq B_{r-1} \subseteq \cdots \subseteq B_0 \subseteq V \times V'$ such that the following conditions hold for $1 \leq i \leq r$:

$$(v, v') \in B_r.$$

3 If $(u, u') \in B_0$, then $\deg_G(u) = \deg_{G'}(u')$ and f(u) = f'(u').

- If $(u, u') \in B_i$ and $\{u, w\} \in E$, then there is $w' \in V'$ such that $\{u', w'\} \in E'$, $(w, w') \in B_{i-1}$ and $\pi(w, u) = \pi'(w', u')$.
- If $(u, u') \in B_i$ and $\{u', w'\} \in E'$, then there is $w \in V$ such that $\{u, w\} \in E$, $(w, w') \in B_{i-1}$ and $\pi(w, u) = \pi'(w', u')$.

We say that $v \in V$ and $v' \in V'$ are r-SV-bisimilar and write $(G, f, v, p) \bigoplus_{r}^{SV} (G', f', v', p')$ (or simply $v \bigoplus_{r}^{SV} v'$) if there exists an r-SV-bisimulation between them.

Lemma

Let G = (V, E) and G' = (V', E') be graphs, let f and f' be inputs for Gand G', respectively, and let p and p' be port numberings of G and G', respectively. If $(G, f, v, p) \bigoplus_{r}^{SV} (G', f', v', p')$ for some $r \in \mathbb{N}$, $v \in V$ and $v' \in V'$, then for all algorithms $A \in SV$ we have $x_t(v) = x'_t(v')$ for all $t = 0, 1, \ldots, r$, that is, the state of v and v' is identical in rounds $0, 1, \ldots, r$.

Bisimilarity

Lemma

The r-SV-bisimilarity relation \bigoplus_{r}^{SV} is an equivalence relation in the class of quadruples (G, f, v, p), where G = (V, E) is a graph, f is an input for G, p is a port numbering of G and $v \in V$.

Lemma

Let G = (V, E) and G' = (V', E') be graphs, let f and f' be inputs for G and G', respectively, let p and p' be port numberings of G and G', respectively, and let $v \in V$, $v' \in V'$. Then $(G, f, v, p) \bigoplus_{r}^{SV} (G', f', v', p')$ iff the following conditions hold:

- $(G, f, v, p) \underset{r-1}{\overset{\mathcal{SV}}{\leftarrow}} (G', f', v', p').$
- ② If {v, w} ∈ E, then there is w' ∈ V' such that {v', w'} ∈ E', (G, f, w, p) $\underset{r-1}{\overset{SV}{\rightharpoonup}}$ (G', f', w', p') and $\pi(w, v) = \pi'(w', v')$.
- If $\{v', w'\} \in E'$, then there is $w \in V$ such that $\{v, w\} \in E$, $(G, f, w, p) \stackrel{SV}{\to}_{r-1}^{SV} (G', f', w', p')$ and $\pi(w, v) = \pi'(w', v')$.

If $v = (a_1, a_2, ..., a_i)$ and $u = (a_1, a_2, ..., a_{i+1})$, we say that node v is the *parent* of node u and that u is a *child* of v.

We say that the node v is *even* if i is even and *odd* if i is odd.

If $a_i = (b_1, b_2)$, we call (b_1, b_2) the *type* of node v.

Lemma

For each d, we have $\deg(v) \in \{1, d\}$ for all $v \in V_d$, and thus $G_d \in \mathcal{F}(d)$. Additionally, G_d is a subgraph of G_{d+1} .

Lemma

For each d, we have $\deg(v) \in \{1, d\}$ for all $v \in V_d$, and thus $G_d \in \mathcal{F}(d)$. Additionally, G_d is a subgraph of G_{d+1} .

Lemma

Let $v \in V_d$ and $a \in \{0, 1, ..., d\}$. Then there is at most one node $u \in V_d$ such that $\{v, u\} \in E_d$ and $\pi_d(u, v) = a$.

Easy observations

Lemma

Let $v = (a_1, a_2, ..., a_i) \in V_d$, where i < 2d. If v is odd, then for all $a \in \{1, 2, ..., d\}$ there exists $u \in V_d$ such that $\{v, u\} \in E_d$ and $\pi_d(u, v) = a$. If v is even, then either for all $a \in \{0, 1, ..., d-1\}$ or for all $a \in \{0, 1, ..., d-2, d\}$ there exists $u \in V_d$ such that $\{v, u\} \in E_d$ and $\pi_d(u, v) = a$. In the case of even v and a = d, node u is the parent of node v.

Easy observations

Lemma

Let $v = (a_1, a_2, \ldots, a_i) \in V_d$, where i < 2d. If v is odd, then for all $a \in \{1, 2, \ldots, d\}$ there exists $u \in V_d$ such that $\{v, u\} \in E_d$ and $\pi_d(u, v) = a$. If v is even, then either for all $a \in \{0, 1, \ldots, d-1\}$ or for all $a \in \{0, 1, \ldots, d-2, d\}$ there exists $u \in V_d$ such that $\{v, u\} \in E_d$ and $\pi_d(u, v) = a$. In the case of even v and a = d, node u is the parent of node v.

Lemma

Let $\{v, u\} \in E_{d+1} \setminus E_d$ be such that $v \in V_d$. Then u is a child of v. If v is odd, then $\pi_{d+1}(v, u) = \pi_{d+1}(u, v) = d + 1$. If v is even, then $\pi_{d+1}(v, u) = d + 1$ and $\pi_{d+1}(u, v) \in \{d - 1, d\}$.

Lemma

Let $(\overline{v}_1, \overline{v}_2)$, where $\overline{v}_i = (v_0^i, v_1^i, \dots, v_k^i)$ for some $k \leq 2d - 3$ and all i = 1, 2, be a PSW in G_d . If for some $\ell \in \{0, 1, \dots, k - 1\}$ the node $v_{\ell+1}^i$ is a child of node v_{ℓ}^i for all i = 1, 2, and we have $\pi_d(v_{\ell}^1, v_{\ell+1}^1) = \pi_d(v_{\ell}^2, v_{\ell+1}^2)$, then $(\overline{v}_1, \overline{v}_2)$ is not a critical PSW in G_d .

Lemma

Let $(\overline{v}_1, \overline{v}_2)$ be a PSW of length $k \leq 2d - 3$ in G_d . Then there is a PSW of length k + 2 in G_{d+1} .

Second-to-last node is in $V_d \setminus V_{d-1}$

Lemma

Let $(\overline{v}_1, \overline{v}_2)$, where $\overline{v}_i = (v_0^i, v_1^i, \dots, v_k^i)$ for some $k \leq 2d - 3$ and all i = 1, 2, be a critical PSW in G_d . Then we have $v_{k-1}^i \in V_d \setminus V_{d-1}$ for some $i \in \{1, 2\}$.

Lemma

Let $(\overline{v}_1, \overline{v}_2)$, where $\overline{v}_i = (v_0^i, v_1^i, \dots, v_k^i)$ for some $k \leq 2d - 3$ and all i = 1, 2, be a pair of walks in G_d such that conditions (1) and (2) hold. If $(\overline{v}_1, \overline{v}_2)$ is not a PSW in G_d , then for each neighbour $v_{k+1}^1 \in V_d$ of v_k^1 there is a neighbour $v_{k+1}^2 \in V_d$ of v_k^2 such that $\pi_d(v_{k+1}^1, v_k^1) = \pi_d(v_{k+1}^2, v_k^2)$, and vice versa.

Lemma

Let $(\overline{v}_1, \overline{v}_2)$, where $\overline{v}_i = (v_0^i, v_1^i, \dots, v_k^i)$ for some $k \le 2d - 3$ and all i = 1, 2, be a critical PSW in G_d . Then $(\overline{v}'_1, \overline{v}'_2)$, where $\overline{v}'_i = (v_0^i, v_1^i, \dots, v_{k-2}^i)$ for all i = 1, 2, is a PSW in G_{d-1} .

Minimum length of a PSW and bisimilarity

Lemma

Let $(\overline{v}_1, \overline{v}_2)$ be a PSW of length $k \leq 2d - 3$ in G_d . Then $k \geq 2d - 3$.

Minimum length of a PSW and bisimilarity

Lemma

Let $(\overline{v}_1, \overline{v}_2)$ be a PSW of length $k \leq 2d - 3$ in G_d . Then $k \geq 2d - 3$.

Lemma

We have $((1,0)) \leftrightarrow_{2d-3}^{SV} ((2,1))$, that is, the nodes ((1,0)) and ((2,1)) of G_d are (2d-3)-SV-bisimilar.

Separation by a graph problem

Separation by a graph problem

Separation by a graph problem

Hella et al. (PODC 2012):

- Logical characterisations for constant-time variants of the problem classes
- In a certain class of structures, SV corresponds to *multimodal logic*
- ... and MV corresponds to graded multimodal logic.

Hella et al. (PODC 2012):

- Logical characterisations for constant-time variants of the problem classes
- In a certain class of structures, SV corresponds to *multimodal logic*
- ... and MV corresponds to graded multimodal logic.
- Our result: When given a formula ϕ of graded multimodal logic, we can find an equivalent formula ψ of multimodal logic, but in general, the modal depth md(ψ) of ψ has to be at least md(ϕ) + Δ 1.

Conclusion

 $\mathcal{MV}:$ Send a vector, receive a multiset.

SV: Send a vector, receive a set.

Previously:

• It is possible to simulate \mathcal{MV} in \mathcal{SV} by using $2\Delta - 2$ extra rounds.

This work:

- $2\Delta 2$ rounds are necessary to solve the simulation problem.
- There is a graph problem for which the difference in running time between \mathcal{MV} and \mathcal{SV} is $\Delta 1$ rounds.

The thesis A Classification of Weak Models of Distributed Computing is available at http://hdl.handle.net/10138/144214.