The value of incoming message
multiplicities in distributed computing

Tuomo Lempidinen
Aalto University

Logic seminar, 10th December 2014

40

Distributed system

A graph, whose each node

runs the same algorithm,
can be given a local input,

can communicate with its
neighbours,

produces a local output.

40

Communications happens in synchronous rounds

In every round, each node v
© sends messages to its neighbours,

@ receives messages from its
neighbours,

@ updates its state.

Communications happens in synchronous rounds

In every round, each node v
@ sends messages to its neighbours,

@ receives messages from its
neighbours,

@ updates its state.

Communications happens in synchronous rounds

In every round, each node v
@ sends messages to its neighbours,

@ receives messages from its
neighbours,

© updates its state.

Communications happens in synchronous rounds

In every round, each node v
@ sends messages to its neighbours,

@ receives messages from its
neighbours,

@ updates its state.

After the final round, each node
announces its own output.

Focus on communication, not computation

The running time of an algorithm is
the number of communications
rounds.

The running time may depend on

@ the maximum degree of the
graph, A,

@ the number of nodes, n.

40

Port numbering

A port of a graph G = (V, E) is a pair (v, i), where v € V and
i€{1,2,...,deg(v)}. Let P(G) be the set of all ports of G. A port
numbering of G is a bijection p: P(G) — P(G) such that

p(v,i) = (u,j) for some i and j if and only if {v,u} € E.

Intuitively, if p(v, i) = (u,j), then (v, i) is an output port of node v that is
connected to an input port (u,j) of node wu.

Port numbering

A port of a graph G = (V, E) is a pair (v, i), where v € V and
i€{1,2,...,deg(v)}. Let P(G) be the set of all ports of G. A port
numbering of G is a bijection p: P(G) — P(G) such that

p(v,i) = (u,j) for some i and j if and only if {v,u} € E.

Intuitively, if p(v, i) = (u,j), then (v, i) is an output port of node v that is
connected to an input port (u,j) of node wu.

We say that a port numbering p is consistent if we have
p(p(v,i)) = (v,i) for all (v,i) € P(G),

or, in other words, if the input port and the output port connected to the
same neighbour always have the same number.

Graph classes and local inputs

For each positive integer A, denote by F(A) the class of all simple
undirected graphs of maximum degree at most A.

6 /40

Graph classes and local inputs

For each positive integer A, denote by F(A) the class of all simple
undirected graphs of maximum degree at most A.

An input for a graph G = (V,E) is a function f: V — X, where X 3 0 is a
finite set. For each v € V, the value f(v) is called the local input of v.

The symbol () € X is used to indicate “no input”.

6 /40

Algorithms as state machines

Let A € Ny and let X be a set of local inputs. A distributed state machine
for (F(A), X) is a tuple A = (Y, Z,00, M, u,0), where

@ Y is a set of states,
Z C Y is a finite set of stopping states,
o0: {0,1,...,A} x X — Y is a function that defines the initial state,
M is a set of messages such that e € M,

p: Y x [A] = M is a function that constructs the outgoing messages,
such that u(z,i) =eforall ze€ Z and i € [4],

@ 0: Y x MA = Y is a function that defines the state transitions, such
that o(z,m) = z for all z € Z and m € M2,

The special symbol ¢ € M indicates “no message”.

Execution

Let G = (V,E) € F(A), let p be a port numbering of G, let f: V — X,

and let A be a distributed state machine for (F(A), X).

The state of the system in round r € N is a function x,: V — Y, where
x,(v) is the state of node v in round r. To initialise the nodes, set

xo(v) = oo(deg(v), f(v)) foreach v e V.

40

Execution

Let G = (V,E) € F(A), let p be a port numbering of G, let f: V — X,
and let A be a distributed state machine for (F(A), X).

The state of the system in round r € N is a function x,: V — Y, where
x,(v) is the state of node v in round r. To initialise the nodes, set
xo(v) = oo(deg(v), f(v)) foreach v e V.

Then, assume that x; is defined for some r € N. Let (u,j) € P(G) and
(v,i) = p(u,j). Now, node v receives the message

ar+l(V7 I) = :U(Xr(u)v.j)
from its port (v, i) in round r + 1. For each v € V, we define
arr1(v) = (ary1(v,1),ar41(v,2), ..., ary1(v,deg(v)), €,¢,. .. ,€) € MA.
Now we can define the new state of each node v € V as follows:

$r41(v) = 0(x(v), 3r41(v)).

Running time

Let t € N. If x¢(v) € Z for all v € V, we say that A stops in time t in
(G,f,p).

The running time of A in (G, f,p) is the smallest t for which this holds.
If A stops in time t in (G, f, p), the output of Ain (G,f,p)isx: V — Y.

For each v € V, the local output of v is x¢(v).

Graph problems

We study graph problems where
@ problem instance is the communication graph (and the possible local
inputs),

@ the local outputs together define a solution.

10 /40

Graph problems

We study graph problems where

@ problem instance is the communication graph (and the possible local
inputs),

@ the local outputs together define a solution.

Let X and Y be finite nonempty sets.
A graph problem is a function [lx y that maps each undirected simple
graph G = (V, E) and each input f: V — X to a set Mx y(G, f) of

solutions.

Each solution S € Mx y(G, f) is a function S: V — Y.

10/40

Solving a graph problem

Let Mx, y be a graph problem, T: N x N — N and A = (Aj, A,...) such
that each An is a distributed state machine for (F(A), X). Algorithm A
solves lNx y in time T if the following holds for all A € N, all finite
graphs G = (V,E) € F(A), all inputs f: V — X and all port
numberings p of G:

@ Ax stops in time T(A,|V|) in (G, f,p).

@ The output of Aa in (G, f,p)isin Mx y(G,f).

11 /40

Solving a graph problem

Let Mx, y be a graph problem, T: N x N — N and A = (Aj, A,...) such
that each An is a distributed state machine for (F(A), X). Algorithm A
solves lNx y in time T if the following holds for all A € N, all finite
graphs G = (V,E) € F(A), all inputs f: V — X and all port
numberings p of G:

@ Ax stops in time T(A,|V|) in (G, f,p).

@ The output of Aa in (G, f,p)isin Mx y(G,f).

We say that A solves lx y in time T assuming consistency if the above
holds for all consistent port numberings p of G.

If T(A,n) does not depend on n, we say that A solves [x y in constant
time or that A is a local algorithm for 1x y.

11 /40

Graph problems

Often the solution S: V — Y is an
encoding of a subset of vertices or
edges of the graph.

12 /40

Graph problems

Often the solution S: V — Y is an
encoding of a subset of vertices or
edges of the graph.

Example problems:

@ minimum vertex cover,

12 /40

Graph problems

Often the solution S: V — Y is an
encoding of a subset of vertices or
edges of the graph.

Example problems:
@ minimum vertex cover,

@ maximal matching.

12 /40

Variants of the model of computation

VV is the class of all distributed state machines (send a vector, receive a
vector).

We can place different restrictions on the algorithms:

@ VB: broadcast the same message to all neighbours:

wly,i) = ply,j) forall i,j € {1,2,...,A} and y € Y,

13 /40

Variants of the model of computation

VV is the class of all distributed state machines (send a vector, receive a
vector).

We can place different restrictions on the algorithms:

@ VB: broadcast the same message to all neighbours:
w(y,i) = p(y,j) forall i,j € {1,2,...,A} and y € Y,
o MYV : receive a multiset of messages:
multiset(3) = multiset(b) = o(y,3) = o(y, b) forall y € Y,
@ SV: receive a set of messages:

set(3) = set(b) = o(y,a) = o(y,b) forally € Y,

13 /40

Variants of the model of computation

VV is the class of all distributed state machines (send a vector, receive a
vector).

We can place different restrictions on the algorithms:

@ VB: broadcast the same message to all neighbours:
w(y,i) = p(y,j) forall i,j € {1,2,...,A} and y € Y,
o MYV : receive a multiset of messages:
multiset(3) = multiset(b) = o(y,3) = o(y, b) forall y € Y,
@ SV: receive a set of messages:

set(a) = set(b) = o(y,a) = o(y,b) forall y € Y,

o MB=MVNVBand SB=SVNVEB.

13 /40

Variants of the model of computation

VV = {(A1, Ay, ...
MV = {(A;, Ay, ...
SV = {(A, As, ...
VB = {(A1, Ay, ...
MB = {(A;1, Ay, ...

SB = {(A, As, ...

~— N N N N

: Aa € VY for all A},
: Apa € MV for all A},
: Ap € SV for all A},
. Ap € VB for all A},
: Ap € MB for all A},
. Ap € SB for all A}.

14 /40

Complexity classes

Let P be the class of all graph problems.

VV. = {MM € P : there is A € VV that solves N assuming consistency},
VV = {1 € P : there is A € VV that solves I},

MV = {1 € P : there is A € MV that solves I},

SV ={l &P : thereis A € SV that solves 1},

VB = {1 € P : there is A € VB that solves [},

MB = {I1 € P : there is A € MB that solves [1},

SB = {M € P : there is A € SB that solves I1}.

15 /40

Containment relations between the classes

VV.

(w J«—o(v8

Trivial relations:
e SVC MV CVVCVV,,
e SBC MB C VB,
e VBCVV,
e MB C MV,
e SB CSV.

Non-trivial: SV C VB? VB C SV?

16

40

Containment relations between the classes

VV,
Hella, Jarvisalo, Kuusisto, Laurinharju, L.,
71& Luosto, Suomela, Virtema (PODC 2012):
[V‘V] ﬁ[V‘B] SBC MB=VBCSV=MV=VVCVV,.
\ \
(Mv) # (MB)
1 f
1 #
-

(58)

17 /40

Containment relations between the classes

VV.

7
[V‘VJ

|

f[v‘B]

|

[M‘V] # (M8

!
£

[S‘V}J

(58)

Hella, Jarvisalo, Kuusisto, Laurinharju, L.,
Luosto, Suomela, Virtema (PODC 2012):

SBC MB=VB C SV=MV=VVCVV.

Hella et al. also showed that constant-time
variants of the classes can be characterised by
certain modal logics.

17 /40

The relationship of MV and SV

Trivially SV C MV.

Hella, Jarvisalo, Kuusisto, Laurinharju, L., Luosto, Suomela, Virtema
(PODC 2012):

Let I be a graph problem and let T: N x N — N. Assume that there is an
algorithm A € MV that solves 1 in time T. Then there is an algorithm
B € SV that solves N in time T', where T'(n,A) = T(n,A) +2A — 2.

It follows that SV = MV.

18 /40

Idea behind the simulation theorem

First, solve the following simulation problem by an SV-algorithm:

O ()

p1 po Now the pair

If p1 = po, then
output(v) # output(w).

(output, port number)
is distinct for each neighbour.

This takes 2A — 2 communication rounds.

19 /40

Idea behind the simulation theorem

First, solve the following simulation problem by an SV-algorithm:

O ()

p1 po Now the pair

If p1 = po, then
output(v) # output(w).

(output, port number)
is distinct for each neighbour.

This takes 2A — 2 communication rounds.

Then, simulate the MV-algorithm by attaching the above pair to each
message. That way we can reconstruct the message multiplicities.

19 /40

New results: Lower bounds for the simulation

Is the overhead of 2A — 2 rounds really needed to reconstruct the message
multiplicities by an SV-algorithm?

For each A > 2 there is a graph G = (V,E) € F(A), a port numbering p
of G and nodes v,u,w € V such that when executing any

algorithm A € SV in (G, p), node v receives identical messages from its
neighbours u and w in rounds 1,2, ... 2A — 2.

20 /40

New results: Lower bounds for the simulation

Is the overhead of 2A — 2 rounds really needed to reconstruct the message
multiplicities by an SV-algorithm?

For each A > 2 there is a graph G = (V,E) € F(A), a port numbering p
of G and nodes v,u,w € V such that when executing any

algorithm A € SV in (G, p), node v receives identical messages from its
neighbours u and w in rounds 1,2, ... 2A — 2.

There is a graph problem T1 that can be solved in one round by an algorithm
in MV but that requires at least time T, where T(n,A) > A for all A > 2,
when solved by an algorithm in SV.

20 /40

Notation for outgoing port numbers

If p(v,i) = (u,j), we write w(v,u) = i. Thatis, (v, u) is the number of
the output port of v that is connected to u.

21/40

How to prove that two nodes stay in the same state?

Definition
Let G = (V,E) and G’ = (V’, E’) be graphs, let f and f’ be inputs for G
and G’, respectively, and let p and p’ be port numberings of G and G/,
respectively. An r-SV-bisimulation between nodes v € V and v/ € V' is a
sequence of binary relations B, C B,_1 C --- C By C V x V/ such that the
following conditions hold for 1 </ < r:
Q (v,V)eB,.
Q If (u,u') € By, then deg¢(u) = dege/(u') and f(u) = /().
Q If (u,u') € Bj and {u,w} € E, then there is w’ € V' such that
{v,w'}eFE, (w,w)e Bji_1 and (w, u) = 7'(w/,).
Q If (u,u') € Bi and {U/,w'} € E’, then there is w € V such that
{u,w} € E, (w,w') € Bi_1 and 7n(w,u) = 7'(w',).

How to prove that two nodes stay in the same state?

We say that v € V and v/ € V/ are r-SV-bisimilar and write
(G, f,v,p) =V (G, ',V p') (or simply v &5V V') if there exists an
r-SV-bisimulation between them.

Let G =(V,E) and G' = (V', E') be graphs, let f and f' be inputs for G
and G', respectively, and let p and p’ be port numberings of G and G’,
respectively. If (G,f,v,p) <Y (G, f, v/, p') for somer €N, v € V and
v/ € V', then for all algorithms A € SV we have x;(v) = x;(v') for all
t=0,1,...,r, that is, the state of v and v’ is identical in rounds 0,1,...,r.

23 /40

Bisimilarity

The r-SV-bisimilarity relation <5 is an equivalence relation in the class

of quadruples (G, f,v,p), where G = (V,E) is a graph, f is an input for G,
p is a port numbering of G and v € V.

Let G =(V,E) and G' = (V', E') be graphs, let f and ' be inputs for G
and G’, respectively, let p and p’ be port numberings of G and G’,
respectively, and let v € V, v/ € V'. Then (G, f,v,p) Y (G, f',v', p)
iff the following conditions hold:
@ (G,f,v,p) &% (G, f', V., p).
@ If{v,w} € E, then there is w' € V' such that {v',w'} € E,
(G, f,w,p) &Y (G, ', W, p') and T(w,v) = 7' (W, V).
@ If{V/,w'} € E’, then there is w € V such that {v,w} € E,
(G, f,w,p) &Y (G, f,w',p') and n(w,v) = ' (W, V).

24 /40

Definition of the graph Gy

Q 0e Vy.

Q@ ((1,0)),((2,1)),((3,2)).((4,3)),. .-, ((d,d = 1)) € V4.

Q If (a1, a2,...,ai) € Vg, where i is odd and i < 2d, then o
(a1,82,...,a},1) € Vg forall j=1,2,...,d — 1, where &, = (],)
is defined as follows. Let (b1, bp) = a; and b;r =1if bp =0, b;r = by
otherwise. Define

d=min({1,2,...,d}\ {b),c,,....d '},

d =min({1,2,...,d}\ {b1,c3,3,...,d).

Q If (a1,a2,...,a;) € Vg, where i is even and 0 < i < 2d, then o
(a1, 82,...,a},1) € Vg forall j=1,2,...,d — 1, where &, = (],)
is defined as follows. Let (b1, bp) = a;. Define

d=min({1,2,...,d}\ {b2,cl, 2,,d '},

b =min({0,1,...,d =1} \ {b1, 3, 3,...,d71}).

26 /40

Definition of the graph Gy

The set E4 of edges consists of all pairs {v, u}, where

v=(a1,a2,...,a;) € Vg and u=(a1,a2,...,aj,a;+1) € Vg for some
ie{0,1,...}.
If v=1(a1,a2,...,a;) and u= (a1, a2,...,ai+1), where a;11 = (b1, b), the

outgoing port number from v to u is w4(v, u) = by and the outgoing port
number from u to v is mq(u, v) = by.

27 /40

Pairs of separating walks (PSWs)

A walk is a sequence vV = (vp, vy, . ..
forall i=0,1,...,k—1.

, Vi) of nodes such that {v;,vi11} € Ey4

A pair (V1,V2) of walks, where v; = (v§, v{,...,v}) for all i = 1,2, is called
a pair of separating walks (PSW) of length k in Gy if the following
conditions hold:
9 v§ =((1,0)) and v¢ = ((2,1)).
Q my(v J-l, vjl_l) = 7rd(vj2, vj2_1) forall j=1,2,... k.
© Thereis v,}“ € Vg with {v{, Vl:<L+1} € E4 such that there is no
vZ,1 € Vg for which {vZ,v2,,} € Eg and
Wd(Vl}-H’ V/}) = 7Td(V13+1’ V/%)

We say that a pair of separating walks of length k in Gy is critical if there
does not exist a pair of separating walks of length k' in G4 for any k' < k.

28 /40

A pair of separating walks in G,

=@-o— /4
W‘|3l4
W..1|3W..2|2y
=@-o— —
W‘.3l4 B e I50)
=0-c—o=@
=@o—
¥2l3
=@-o—" AN
¥2l4 <.
=0 ——o=@-—m
=@-o—" e
*3/4 1\ <+
¥2l3

—— o
¥2l4 < i
¥ 111 vl 333
=@o—" oY
*3/4 1\
¥2l3
= enaea s N
=0-~— < o
W’mumw..3|ﬂv

A pair of separating walks in G,

A pair of separating walks in G,

Proof idea

© The length of a critical PSW in Gy is at least 2d — 3.
@ The sequence of port numbers starts from 1 or 2.
@ The numbers grow slowly along the walks.
@ Eventually the sequence reaches d.
@ If k is the largest integer for which ((1,0)) %Y ((2,1)), then there is
a PSW of length k in Gy.

30/40

Definitions

If v=1(a1,a2,...,a;) and u = (a1, a2,...,a;+1), we say that node v is the

parent of node v and that v is a child of v.

We say that the node v is even if i is even and odd if i is odd.

If a; = (b1, b2), we call (b1, bp) the type of node v.

31/40

Easy observations

For each d, we have deg(v) € {1,d} for all v € Vy, and thus G4 € F(d).
Additionally, G4 is a subgraph of Ggy1.

32/40

Easy observations

Lemma

For each d, we have deg(v) € {1,d} for all v € Vy, and thus G4 € F(d).
Additionally, G4 is a subgraph of Ggy1.

Lemma

| A\

Let v e Vyandac{0,1,...,d}. Then there is at most one node u € Vy
such that {v,u} € E4 and wq(u,v) = a.

A\

32/40

Easy observations

Lemma

Let v= (a1, az,...,a;) € Vy, where i < 2d. If v is odd, then for all
ae€{l1,2,...,d} there exists u € Vg such that {v,u} € E4 and

md(u,v) = a. If v is even, then either for all a € {0,1,...,d — 1} or for all
ae€{0,1,...,d —2,d} there exists u € V4 such that {v,u} € E; and
7q(u, v) = a. In the case of even v and a = d, node u is the parent of
node v.)

33 /40

Easy observations

Lemma

Let v= (a1, az,...,a;) € Vy, where i < 2d. If v is odd, then for all
ae€{l1,2,...,d} there exists u € Vg such that {v,u} € E4 and

md(u,v) = a. If v is even, then either for all a € {0,1,...,d — 1} or for all
ae€{0,1,...,d —2,d} there exists u € V4 such that {v,u} € E; and
7q(u, v) = a. In the case of even v and a = d, node u is the parent of
node v.

| A

Lemma

Let {v,u} € E441 \ Eq be such that v € Vy. Then u is a child of v. If v is
odd, then mq11(v,u) = mg4+1(u,v) = d + 1. If v is even, then
ma+1(v,u) =d+1 and mg4+1(u,v) € {d — 1,d}.

A

33/40

Wialks in isomorphic subtrees

Let (V1,V2), where V; = (v}, vi,...,v]) for some k < 2d — 3 and all
i=1,2, be a PSWin Gq. If for some ¢ € {0,1,..., k—1} the node V€i+1 is
a child of node v} for all i = 1,2, and we have m4(v}, Vi) = md(VE, Vi),
then (V1,V2) is not a critical PSW in Gy.

34 /40

Extending a PSW

Let (v1,Vvp) be a PSW of length k < 2d — 3 in G4. Then there is a PSW of
length k + 2 in Gy11.

35/40

Second-to-last node is in Vg \ Vy_1

Let (v1,V2), where Vi = (V{, vi,..., v]) for some k < 2d — 3 and all
i =1,2, be a critical PSW in G4. Then we have v,i_l € Vg \ Vy_1 for some
i€{1,2}.

36 /40

Pair of walks that is not a PSW

Lemma

Let (V1,V2), where V; = (V§,vi,...,v]) for some k < 2d — 3 and all

i =1,2, be a pair of walks in G4 such that conditions (1) and (2) hold. If
(V1,V2) is not a PSW in Gg, then for each neighbour v, € Vg of vj there
is a neighbour vZ , € Vg of v{ such that wq(vj, 1, vi) = ma(Vi,q, Vi), and
vice versa.

v

37 /40

The main lemma

Let (V1,V2), where V; = (v}, vi,...,v]) for some k < 2d — 3 and all
i =1,2, be a critical PSW in G4. Then (V},V}), where
V= (v, vi,...,v]_,) foralli=1,2,isa PSWin Gy_1.

38 /40

Minimum length of a PSW and bisimilarity

Let (v1,V2) be a PSW of length k < 2d — 3 in G4. Then k > 2d — 3.

39 /40

Minimum length of a PSW and bisimilarity

Lemma

Let (v1,V2) be a PSW of length k < 2d — 3 in G4. Then k > 2d — 3.

| A

Lemma

We have ((1,0)) <5Y 5 ((2,1)), that is, the nodes ((1,0)) and ((2,1)) of
Gy are (2d — 3)-SV-bisimilar.

\

39 /40

Conclusion

MYV: Send a vector, receive a multiset.

SV: Send a vector, receive a set.

Previously:

@ It is possible to simulate MV in SV by using 2A — 2 extra rounds.

This work:

@ 2A — 2 rounds are necessary to solve the simulation problem.

@ There is a graph problem for which the difference in running time
between MV and SV is A — 1 rounds.

The thesis A Classification of Weak Models of Distributed Computing is
available at http://hdl.handle.net/10138/144214.

40 /40

